IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57497-z.html
   My bibliography  Save this article

Dynamic synthesis and transport of phenazine-1-carboxylic acid to boost extracellular electron transfer rate

Author

Listed:
  • Feng Li

    (Tianjin University)

  • Baocai Zhang

    (Tianjin University
    Northeastern University)

  • Xizi Long

    (University of South China)

  • Huan Yu

    (Tianjin University
    Northeastern University)

  • Sicheng Shi

    (Tianjin University)

  • Zixuan You

    (Tianjin University)

  • Qijing Liu

    (Tianjin University)

  • Chao Li

    (Tianjin University)

  • Rui Tang

    (Tianjin University)

  • Shengbo Wu

    (Tianjin University)

  • Xingjuan An

    (Tianjin University)

  • Yuanxiu Li

    (Tianjin University)

  • Liang Shi

    (China University of Geoscience in Wuhan)

  • Kenneth H. Nealson

    (University of Southern California)

  • Hao Song

    (Tianjin University
    Northeastern University)

Abstract

Electron shuttle plays a decisive role in extracellular electron transfer (EET) of exoelectrogens. However, neither identifying the most efficient electron shuttle molecule nor programming its optimal synthesis level that boosts EET has been established. Here, the phenazine-1-carboxylic acid (PCA) biosynthesis pathway is first constructed to synthesize PCA at an optimal level for EET in Shewanella oneidensis MR-1. To facilitate PCA transport, the porin OprF is expressed to improve cell membrane permeability, the cytotoxicity of which, however, impaired cell growth. To mitigate cytotoxicity, PCA biosensor is designed to dynamically decouple PCA biosynthesis and transport, resulting in the maximum output power density reaching 2.85 ± 0.10 W m−2, 33.75-fold higher than wild-type strain. Moreover, extensive analyses of cellular electrophysiology, metabolism, and behaviors reveal PCA shuttles electrons from cell to electrode, which is the dominant mechanism underlying PCA-boosted EET. We conclude dynamic synthesis and transport of PCA is an efficient strategy for enhancing EET.

Suggested Citation

  • Feng Li & Baocai Zhang & Xizi Long & Huan Yu & Sicheng Shi & Zixuan You & Qijing Liu & Chao Li & Rui Tang & Shengbo Wu & Xingjuan An & Yuanxiu Li & Liang Shi & Kenneth H. Nealson & Hao Song, 2025. "Dynamic synthesis and transport of phenazine-1-carboxylic acid to boost extracellular electron transfer rate," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57497-z
    DOI: 10.1038/s41467-025-57497-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57497-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57497-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dianne K. Newman & Roberto Kolter, 2000. "A role for excreted quinones in extracellular electron transfer," Nature, Nature, vol. 405(6782), pages 94-97, May.
    2. Chenhui Yang & Hüsnü Aslan & Peng Zhang & Shoujun Zhu & Yong Xiao & Lixiang Chen & Nasar Khan & Thomas Boesen & Yuanlin Wang & Yang Liu & Lei Wang & Ye Sun & Yujie Feng & Flemming Besenbacher & Feng Z, 2020. "Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Joshua T. Atkinson & Lin Su & Xu Zhang & George N. Bennett & Jonathan J. Silberg & Caroline M. Ajo-Franklin, 2022. "Real-time bioelectronic sensing of environmental contaminants," Nature, Nature, vol. 611(7936), pages 548-553, November.
    4. Gemma Reguera & Kevin D. McCarthy & Teena Mehta & Julie S. Nicoll & Mark T. Tuominen & Derek R. Lovley, 2005. "Extracellular electron transfer via microbial nanowires," Nature, Nature, vol. 435(7045), pages 1098-1101, June.
    5. Cong Liu & Di Sun & Jiawen Liu & Ying Chen & Xuge Zhou & Yunrui Ru & Jingrong Zhu & Weijie Liu, 2022. "cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Xiaomeng Liu & Toshiyuki Ueki & Hongyan Gao & Trevor L. Woodard & Kelly P. Nevin & Tianda Fu & Shuai Fu & Lu Sun & Derek R. Lovley & Jun Yao, 2022. "Microbial biofilms for electricity generation from water evaporation and power to wearables," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Lu Lu & Jeremy S. Guest & Catherine A. Peters & Xiuping Zhu & Greg H. Rau & Zhiyong Jason Ren, 2018. "Wastewater treatment for carbon capture and utilization," Nature Sustainability, Nature, vol. 1(12), pages 750-758, December.
    8. Xiaomeng Liu & Hongyan Gao & Joy E. Ward & Xiaorong Liu & Bing Yin & Tianda Fu & Jianhan Chen & Derek R. Lovley & Jun Yao, 2020. "Power generation from ambient humidity using protein nanowires," Nature, Nature, vol. 578(7796), pages 550-554, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parkhey, Piyush & Gupta, Pratima, 2017. "Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1085-1099.
    2. Puying Li & Yajie Hu & Wenya He & Bing Lu & Haiyan Wang & Huhu Cheng & Liangti Qu, 2023. "Multistage coupling water-enabled electric generator with customizable energy output," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Shuai Guo & Yaoxin Zhang & Zhen Yu & Ming Dai & Xuanchen Liu & Hongbo Wang & Siqi Liu & J. Justin Koh & Wanxin Sun & Yuanping Feng & Yuanzheng Chen & Lin Yang & Peng Sun & Geyu Lu & Cunjiang Yu & Wens, 2025. "Leaf-based energy harvesting and storage utilizing hygroscopic iron hydrogel for continuous power generation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Yan, Xuejun & Lee, Hyung-Sool & Li, Nan & Wang, Xin, 2020. "The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Xu, Ting & Song, Jianan & Lin, Weichen & Fu, Boya & Guo, Xingguo & Huang, Xia & Wu, Hui & Zhang, Xiaoyuan, 2021. "A freestanding carbon submicro fiber sponge as high-efficient bioelectrochemical anode for wastewater energy recovery and treatment," Applied Energy, Elsevier, vol. 281(C).
    6. Guoping Ren & Jie Ye & Qichang Hu & Dong Zhang & Yong Yuan & Shungui Zhou, 2024. "Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Leyuan Zhang & Yucheng Zhang & Yang Liu & Sibo Wang & Calvin K. Lee & Yu Huang & Xiangfeng Duan, 2024. "High power density redox-mediated Shewanella microbial flow fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    9. Bin He & Xin Yuan & Shusheng Qian & Bing Li, 2023. "Product low‐carbon design, manufacturing, logistics, and recycling: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(5), September.
    10. Zhuyuan Wang & Ting Hu & Mike Tebyetekerwa & Xiangkang Zeng & Fan Du & Yuan Kang & Xuefeng Li & Hao Zhang & Huanting Wang & Xiwang Zhang, 2024. "Electricity generation from carbon dioxide adsorption by spatially nanoconfined ion separation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Yuming Wang & Yi Li & Longfei Wang & Wenlong Zhang & Thomas Bürgi, 2023. "Bio-Coated Graphitic Carbon Nitrides for Enhanced Nitrobenzene Degradation: Roles of Extracellular Electron Transfer," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
    12. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    13. Zhenguo Gao & Cuiqin Fang & Yuanyuan Gao & Xin Yin & Siyuan Zhang & Jian Lu & Guanglei Wu & Hongjing Wu & Bingang Xu, 2025. "Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    14. Zhou, Yixuan & Su, Xianbo & Zhao, Weizhong & Wang, Lufei & Fu, Haijiao, 2023. "Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion," Renewable Energy, Elsevier, vol. 219(P2).
    15. Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. Liu, Yuanzhe & Lai, Yen-Jung Sean & Rittmann, Bruce E., 2020. "Increased anode respiration enhances utilization of short-chain fatty acid and lipid wet-extraction from Scenedesmus acutus biomass in electro-selective fermentation," Renewable Energy, Elsevier, vol. 148(C), pages 374-379.
    17. Chenyue Guo & Huajie Tang & Pengfei Wang & Qihao Xu & Haodan Pan & Xinyu Zhao & Fan Fan & Tingxian Li & Dongliang Zhao, 2024. "Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. ElMekawy, Ahmed & Hegab, Hanaa M. & Losic, Dusan & Saint, Christopher P. & Pant, Deepak, 2017. "Applications of graphene in microbial fuel cells: The gap between promise and reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1389-1403.
    19. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    20. Xianshu Liu & Jie Ding & Nanqi Ren & Qingyue Tong & Luyan Zhang, 2016. "The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells," IJERPH, MDPI, vol. 13(12), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57497-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.