IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57497-z.html
   My bibliography  Save this article

Dynamic synthesis and transport of phenazine-1-carboxylic acid to boost extracellular electron transfer rate

Author

Listed:
  • Feng Li

    (Tianjin University)

  • Baocai Zhang

    (Tianjin University
    Northeastern University)

  • Xizi Long

    (University of South China)

  • Huan Yu

    (Tianjin University
    Northeastern University)

  • Sicheng Shi

    (Tianjin University)

  • Zixuan You

    (Tianjin University)

  • Qijing Liu

    (Tianjin University)

  • Chao Li

    (Tianjin University)

  • Rui Tang

    (Tianjin University)

  • Shengbo Wu

    (Tianjin University)

  • Xingjuan An

    (Tianjin University)

  • Yuanxiu Li

    (Tianjin University)

  • Liang Shi

    (China University of Geoscience in Wuhan)

  • Kenneth H. Nealson

    (University of Southern California)

  • Hao Song

    (Tianjin University
    Northeastern University)

Abstract

Electron shuttle plays a decisive role in extracellular electron transfer (EET) of exoelectrogens. However, neither identifying the most efficient electron shuttle molecule nor programming its optimal synthesis level that boosts EET has been established. Here, the phenazine-1-carboxylic acid (PCA) biosynthesis pathway is first constructed to synthesize PCA at an optimal level for EET in Shewanella oneidensis MR-1. To facilitate PCA transport, the porin OprF is expressed to improve cell membrane permeability, the cytotoxicity of which, however, impaired cell growth. To mitigate cytotoxicity, PCA biosensor is designed to dynamically decouple PCA biosynthesis and transport, resulting in the maximum output power density reaching 2.85 ± 0.10 W m−2, 33.75-fold higher than wild-type strain. Moreover, extensive analyses of cellular electrophysiology, metabolism, and behaviors reveal PCA shuttles electrons from cell to electrode, which is the dominant mechanism underlying PCA-boosted EET. We conclude dynamic synthesis and transport of PCA is an efficient strategy for enhancing EET.

Suggested Citation

  • Feng Li & Baocai Zhang & Xizi Long & Huan Yu & Sicheng Shi & Zixuan You & Qijing Liu & Chao Li & Rui Tang & Shengbo Wu & Xingjuan An & Yuanxiu Li & Liang Shi & Kenneth H. Nealson & Hao Song, 2025. "Dynamic synthesis and transport of phenazine-1-carboxylic acid to boost extracellular electron transfer rate," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57497-z
    DOI: 10.1038/s41467-025-57497-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57497-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57497-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dianne K. Newman & Roberto Kolter, 2000. "A role for excreted quinones in extracellular electron transfer," Nature, Nature, vol. 405(6782), pages 94-97, May.
    2. Chenhui Yang & Hüsnü Aslan & Peng Zhang & Shoujun Zhu & Yong Xiao & Lixiang Chen & Nasar Khan & Thomas Boesen & Yuanlin Wang & Yang Liu & Lei Wang & Ye Sun & Yujie Feng & Flemming Besenbacher & Feng Z, 2020. "Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Joshua T. Atkinson & Lin Su & Xu Zhang & George N. Bennett & Jonathan J. Silberg & Caroline M. Ajo-Franklin, 2022. "Real-time bioelectronic sensing of environmental contaminants," Nature, Nature, vol. 611(7936), pages 548-553, November.
    4. Gemma Reguera & Kevin D. McCarthy & Teena Mehta & Julie S. Nicoll & Mark T. Tuominen & Derek R. Lovley, 2005. "Extracellular electron transfer via microbial nanowires," Nature, Nature, vol. 435(7045), pages 1098-1101, June.
    5. Cong Liu & Di Sun & Jiawen Liu & Ying Chen & Xuge Zhou & Yunrui Ru & Jingrong Zhu & Weijie Liu, 2022. "cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Xiaomeng Liu & Toshiyuki Ueki & Hongyan Gao & Trevor L. Woodard & Kelly P. Nevin & Tianda Fu & Shuai Fu & Lu Sun & Derek R. Lovley & Jun Yao, 2022. "Microbial biofilms for electricity generation from water evaporation and power to wearables," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Lu Lu & Jeremy S. Guest & Catherine A. Peters & Xiuping Zhu & Greg H. Rau & Zhiyong Jason Ren, 2018. "Wastewater treatment for carbon capture and utilization," Nature Sustainability, Nature, vol. 1(12), pages 750-758, December.
    8. Xiaomeng Liu & Hongyan Gao & Joy E. Ward & Xiaorong Liu & Bing Yin & Tianda Fu & Jianhan Chen & Derek R. Lovley & Jun Yao, 2020. "Power generation from ambient humidity using protein nanowires," Nature, Nature, vol. 578(7796), pages 550-554, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puying Li & Yajie Hu & Wenya He & Bing Lu & Haiyan Wang & Huhu Cheng & Liangti Qu, 2023. "Multistage coupling water-enabled electric generator with customizable energy output," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Parkhey, Piyush & Gupta, Pratima, 2017. "Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1085-1099.
    3. Yan, Xuejun & Lee, Hyung-Sool & Li, Nan & Wang, Xin, 2020. "The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Xu, Ting & Song, Jianan & Lin, Weichen & Fu, Boya & Guo, Xingguo & Huang, Xia & Wu, Hui & Zhang, Xiaoyuan, 2021. "A freestanding carbon submicro fiber sponge as high-efficient bioelectrochemical anode for wastewater energy recovery and treatment," Applied Energy, Elsevier, vol. 281(C).
    5. Guoping Ren & Jie Ye & Qichang Hu & Dong Zhang & Yong Yuan & Shungui Zhou, 2024. "Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Leyuan Zhang & Yucheng Zhang & Yang Liu & Sibo Wang & Calvin K. Lee & Yu Huang & Xiangfeng Duan, 2024. "High power density redox-mediated Shewanella microbial flow fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    8. Bin He & Xin Yuan & Shusheng Qian & Bing Li, 2023. "Product low‐carbon design, manufacturing, logistics, and recycling: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(5), September.
    9. Zhenguo Gao & Cuiqin Fang & Yuanyuan Gao & Xin Yin & Siyuan Zhang & Jian Lu & Guanglei Wu & Hongjing Wu & Bingang Xu, 2025. "Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    10. Liu, Yuanzhe & Lai, Yen-Jung Sean & Rittmann, Bruce E., 2020. "Increased anode respiration enhances utilization of short-chain fatty acid and lipid wet-extraction from Scenedesmus acutus biomass in electro-selective fermentation," Renewable Energy, Elsevier, vol. 148(C), pages 374-379.
    11. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    12. Paweł P. Włodarczyk & Barbara Włodarczyk, 2018. "Microbial Fuel Cell with Ni–Co Cathode Powered with Yeast Wastewater," Energies, MDPI, vol. 11(11), pages 1-9, November.
    13. Yuhan Zhang & Yongbin Wang & Zhibin Chen & Chengzhi Hu & Jiuhui Qu, 2024. "Recovering nutrients and unblocking the cake layer of an electrochemical anaerobic membrane bioreactor," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Wei, Jing & Hao, Xiaodi & van Loosdrecht, Mark C.M. & Li, Ji, 2018. "Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 16-26.
    15. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Beiying Li & Conghe Liu & Jingjing Bai & Yikun Huang & Run Su & Yan Wei & Bin Ma, 2024. "Strategy to mitigate substrate inhibition in wastewater treatment systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Jieni Fu & Weidong Zhu & Xiangmei Liu & Chunyong Liang & Yufeng Zheng & Zhaoyang Li & Yanqin Liang & Dong Zheng & Shengli Zhu & Zhenduo Cui & Shuilin Wu, 2021. "Self-activating anti-infection implant," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    18. Barbara Włodarczyk & Paweł P. Włodarczyk, 2023. "Electricity Production from Yeast Wastewater in Membrane-Less Microbial Fuel Cell with Cu-Ag Cathode," Energies, MDPI, vol. 16(6), pages 1-13, March.
    19. Qi, Lijuan & Wu, Jiansong & Chen, Ye & Wen, Qing & Xu, Haitao & Wang, Yuyang, 2020. "Shape-controllable binderless self-supporting hydrogel anode for microbial fuel cells," Renewable Energy, Elsevier, vol. 156(C), pages 1325-1335.
    20. Choudhury, Payel & Uday, Uma Shankar Prasad & Mahata, Nibedita & Nath Tiwari, Onkar & Narayan Ray, Rup & Kanti Bandyopadhyay, Tarun & Bhunia, Biswanath, 2017. "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 372-389.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57497-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.