IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56071-x.html
   My bibliography  Save this article

Electro-driven direct lithium extraction from geothermal brines to generate battery-grade lithium hydroxide

Author

Listed:
  • Lingchen Kong

    (The George Washington University)

  • Gangbin Yan

    (University of Chicago)

  • Kejia Hu

    (The George Washington University)

  • Yongchang Yu

    (The George Washington University)

  • Nicole Conte

    (The George Washington University)

  • Kevin R. Mckenzie Jr

    (The George Washington University)

  • Michael J. Wagner

    (The George Washington University)

  • Stephen G. Boyes

    (The George Washington University)

  • Hanning Chen

    (The University of Texas at Austin)

  • Chong Liu

    (University of Chicago)

  • Xitong Liu

    (The George Washington University)

Abstract

As Li-ion batteries are increasingly being deployed in electric vehicles and grid-level energy storage, the demand for Li is growing rapidly. Extracting lithium from alternative aqueous sources such as geothermal brines plays an important role in meeting this demand. Electrochemical intercalation emerges as a promising Li extraction technology due to its ability to offer high selectivity for Li and its avoidance of harsh chemical regenerants. In this work, we design an economically feasible electrochemical process that achieves selective lithium extraction from Salton Sea geothermal brine and purification of lithium chloride using intercalation materials, and conversion to battery grade (>99.5% purity) lithium hydroxide by bipolar membrane electrodialysis. We conduct techno-economic assessments using a parametric model and estimated the levelized cost of LiOH•H2O as 4.6 USD/kg at an electrode lifespan of 0.5 years. The results demonstrate the potential of our technology for electro-driven, chemical-free lithium extraction from alternative sources.

Suggested Citation

  • Lingchen Kong & Gangbin Yan & Kejia Hu & Yongchang Yu & Nicole Conte & Kevin R. Mckenzie Jr & Michael J. Wagner & Stephen G. Boyes & Hanning Chen & Chong Liu & Xitong Liu, 2025. "Electro-driven direct lithium extraction from geothermal brines to generate battery-grade lithium hydroxide," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56071-x
    DOI: 10.1038/s41467-025-56071-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56071-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56071-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amir Razmjou & Mohsen Asadnia & Ehsan Hosseini & Asghar Habibnejad Korayem & Vicki Chen, 2019. "Design principles of ion selective nanostructured membranes for the extraction of lithium ions," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Quan Peng & Ruoyu Wang & Zilin Zhao & Shihong Lin & Ying Liu & Dianyu Dong & Zheng Wang & Yiman He & Yuzhang Zhu & Jian Jin & Lei Jiang, 2024. "Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Grosjean, Camille & Miranda, Pamela Herrera & Perrin, Marion & Poggi, Philippe, 2012. "Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1735-1744.
    4. Gangbin Yan & George Kim & Renliang Yuan & Eli Hoenig & Fengyuan Shi & Wenxiang Chen & Yu Han & Qian Chen & Jian-Min Zuo & Wei Chen & Chong Liu, 2022. "The role of solid solutions in iron phosphate-based electrodes for selective electrochemical lithium extraction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. William T. Stringfellow & Patrick F. Dobson, 2021. "Technology for the Recovery of Lithium from Geothermal Brines," Energies, MDPI, vol. 14(20), pages 1-72, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William T. Stringfellow & Patrick F. Dobson, 2021. "Technology for the Recovery of Lithium from Geothermal Brines," Energies, MDPI, vol. 14(20), pages 1-72, October.
    2. Quan Peng & Ruoyu Wang & Zilin Zhao & Shihong Lin & Ying Liu & Dianyu Dong & Zheng Wang & Yiman He & Yuzhang Zhu & Jian Jin & Lei Jiang, 2024. "Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Ewa Knapik & Grzegorz Rotko & Marta Marszałek & Marcin Piotrowski, 2023. "Comparative Study on Lithium Recovery with Ion-Selective Adsorbents and Extractants: Results of Multi-Stage Screening Test with the Use of Brine Simulated Solutions with Increasing Complexity," Energies, MDPI, vol. 16(7), pages 1-20, March.
    4. Simon, Bálint & Ziemann, Saskia & Weil, Marcel, 2015. "Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 300-310.
    5. Jine Wu & Chenyi Liao & Tianyu Li & Jing Zhou & Linjuan Zhang & Jian-Qiang Wang & Guohui Li & Xianfeng Li, 2023. "Metal-coordinated polybenzimidazole membranes with preferential K+ transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    7. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Rubio, Francisco & Llopis-Albert, Carlos & Besa, Antonio José, 2023. "Optimal allocation of energy sources in hydrogen production for sustainable deployment of electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    9. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    10. Cabeza, Luisa F. & Gutierrez, Andrea & Barreneche, Camila & Ushak, Svetlana & Fernández, Ángel G. & Inés Fernádez, A. & Grágeda, Mario, 2015. "Lithium in thermal energy storage: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1106-1112.
    11. Valentin Goldberg & Ali Dashti & Robert Egert & Binil Benny & Thomas Kohl & Fabian Nitschke, 2023. "Challenges and Opportunities for Lithium Extraction from Geothermal Systems in Germany—Part 3: The Return of the Extraction Brine," Energies, MDPI, vol. 16(16), pages 1-21, August.
    12. John D. Graham & John A. Rupp & Eva Brungard, 2021. "Lithium in the Green Energy Transition: The Quest for Both Sustainability and Security," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    13. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    14. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
    15. Gogwon Choe & Hyungsub Kim & Jaesub Kwon & Woochul Jung & Kyu-Young Park & Yong-Tae Kim, 2024. "Re-evaluation of battery-grade lithium purity toward sustainable batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Wang, Xiao-Qing & Qin, Meng & Moldovan, Nicoleta-Claudia & Su, Chi-Wei, 2023. "Bubble behaviors in lithium price and the contagion effect: An industry chain perspective," Resources Policy, Elsevier, vol. 83(C).
    17. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    18. Huawen Peng & Kaicheng Yu & Xufei Liu & Jiapeng Li & Xiangguo Hu & Qiang Zhao, 2023. "Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Eli Hoenig & Yu Han & Kangli Xu & Jingyi Li & Mingzhan Wang & Chong Liu, 2024. "In situ generation of (sub) nanometer pores in MoS2 membranes for ion-selective transport," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56071-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.