IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48992-w.html
   My bibliography  Save this article

Observation of phonon Stark effect

Author

Listed:
  • Zhiheng Huang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yunfei Bai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yanchong Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Le Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xuan Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jiangbin Wu

    (Chinese Academy of Sciences)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Wei Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Dongxia Shi

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yang Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Tiantian Zhang

    (Chinese Academy of Sciences)

  • Qingming Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Lanzhou University)

  • Ping-Heng Tan

    (Chinese Academy of Sciences)

  • Zhipei Sun

    (Aalto University)

  • Sheng Meng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Yaxian Wang

    (Chinese Academy of Sciences)

  • Luojun Du

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Guangyu Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

Abstract

Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2H-MoS2. The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon A2u. Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations.

Suggested Citation

  • Zhiheng Huang & Yunfei Bai & Yanchong Zhao & Le Liu & Xuan Zhao & Jiangbin Wu & Kenji Watanabe & Takashi Taniguchi & Wei Yang & Dongxia Shi & Yang Xu & Tiantian Zhang & Qingming Zhang & Ping-Heng Tan , 2024. "Observation of phonon Stark effect," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48992-w
    DOI: 10.1038/s41467-024-48992-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48992-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48992-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu-Hsuan Kuo & Yong Kyu Lee & Yangsi Ge & Shen Ren & Jonathan E. Roth & Theodore I. Kamins & David A. B. Miller & James S. Harris, 2005. "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature, Nature, vol. 437(7063), pages 1334-1336, October.
    2. Minhao He & Pasqual Rivera & Dinh Tuan & Nathan P. Wilson & Min Yang & Takashi Taniguchi & Kenji Watanabe & Jiaqiang Yan & David G. Mandrus & Hongyi Yu & Hanan Dery & Wang Yao & Xiaodong Xu, 2020. "Valley phonons and exciton complexes in a monolayer semiconductor," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Biswajit Datta & Mandeep Khatoniar & Prathmesh Deshmukh & Félix Thouin & Rezlind Bushati & Simone Liberato & Stephane Kena Cohen & Vinod M. Menon, 2022. "Highly nonlinear dipolar exciton-polaritons in bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Ying Wang & Jun Xiao & Hanyu Zhu & Yao Li & Yousif Alsaid & King Yan Fong & Yao Zhou & Siqi Wang & Wu Shi & Yuan Wang & Alex Zettl & Evan J. Reed & Xiang Zhang, 2017. "Structural phase transition in monolayer MoTe2 driven by electrostatic doping," Nature, Nature, vol. 550(7677), pages 487-491, October.
    5. Zhipeng Li & Tianmeng Wang & Chenhao Jin & Zhengguang Lu & Zhen Lian & Yuze Meng & Mark Blei & Shiyuan Gao & Takashi Taniguchi & Kenji Watanabe & Tianhui Ren & Sefaattin Tongay & Li Yang & Dmitry Smir, 2019. "Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe2," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    6. Pasqual Rivera & John R. Schaibley & Aaron M. Jones & Jason S. Ross & Sanfeng Wu & Grant Aivazian & Philip Klement & Kyle Seyler & Genevieve Clark & Nirmal J. Ghimire & Jiaqiang Yan & D. G. Mandrus & , 2015. "Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    7. Xiaozhou Zan & Xiangdong Guo & Aolin Deng & Zhiheng Huang & Le Liu & Fanfan Wu & Yalong Yuan & Jiaojiao Zhao & Yalin Peng & Lu Li & Yangkun Zhang & Xiuzhen Li & Jundong Zhu & Jingwei Dong & Dongxia Sh, 2024. "Electron/infrared-phonon coupling in ABC trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    8. Long Zhang & Fengcheng Wu & Shaocong Hou & Zhe Zhang & Yu-Hsun Chou & Kenji Watanabe & Takashi Taniguchi & Stephen R. Forrest & Hui Deng, 2021. "Van der Waals heterostructure polaritons with moiré-induced nonlinearity," Nature, Nature, vol. 591(7848), pages 61-65, March.
    9. Bruno R. Carvalho & Yuanxi Wang & Sandro Mignuzzi & Debdulal Roy & Mauricio Terrones & Cristiano Fantini & Vincent H. Crespi & Leandro M. Malard & Marcos A. Pimenta, 2017. "Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    10. Ioannis Paradisanos & Shivangi Shree & Antony George & Nadine Leisgang & Cedric Robert & Kenji Watanabe & Takashi Taniguchi & Richard J. Warburton & Andrey Turchanin & Xavier Marie & Iann C. Gerber & , 2020. "Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charalambos Louca & Armando Genco & Salvatore Chiavazzo & Thomas P. Lyons & Sam Randerson & Chiara Trovatello & Peter Claronino & Rahul Jayaprakash & Xuerong Hu & James Howarth & Kenji Watanabe & Taka, 2023. "Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Yesenia A. García Jomaso & Brenda Vargas & David Ley Domínguez & Román J. Armenta-Rico & Huziel E. Sauceda & César L. Ordoñez-Romero & Hugo A. Lara-García & Arturo Camacho-Guardian & Giuseppe Pirrucci, 2024. "Intercavity polariton slows down dynamics in strongly coupled cavities," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Shun Feng & Aidan J. Campbell & Mauro Brotons-Gisbert & Daniel Andres-Penares & Hyeonjun Baek & Takashi Taniguchi & Kenji Watanabe & Bernhard Urbaszek & Iann C. Gerber & Brian D. Gerardot, 2024. "Highly tunable ground and excited state excitonic dipoles in multilayer 2H-MoSe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Ruoming Peng & Adina Ripin & Yusen Ye & Jiayi Zhu & Changming Wu & Seokhyeong Lee & Huan Li & Takashi Taniguchi & Kenji Watanabe & Ting Cao & Xiaodong Xu & Mo Li, 2022. "Long-range transport of 2D excitons with acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Niclas S. Mueller & Rakesh Arul & Gyeongwon Kang & Ashley P. Saunders & Amalya C. Johnson & Ana Sánchez-Iglesias & Shu Hu & Lukas A. Jakob & Jonathan Bar-David & Bart Nijs & Luis M. Liz-Marzán & Fang , 2023. "Photoluminescence upconversion in monolayer WSe2 activated by plasmonic cavities through resonant excitation of dark excitons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Xin Cong & Parisa Ali Mohammadi & Mingyang Zheng & Kenji Watanabe & Takashi Taniguchi & Daniel Rhodes & Xiao-Xiao Zhang, 2023. "Interplay of valley polarized dark trion and dark exciton-polaron in monolayer WSe2," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Ke Wei & Qirui Liu & Yuxiang Tang & Yingqian Ye & Zhongjie Xu & Tian Jiang, 2023. "Charged biexciton polaritons sustaining strong nonlinearity in 2D semiconductor-based nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Biswajit Datta & Mandeep Khatoniar & Prathmesh Deshmukh & Félix Thouin & Rezlind Bushati & Simone Liberato & Stephane Kena Cohen & Vinod M. Menon, 2022. "Highly nonlinear dipolar exciton-polaritons in bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Soungmin Bae & Kana Matsumoto & Hannes Raebiger & Ken-ichi Shudo & Yong-Hoon Kim & Ørjan Sele Handegård & Tadaaki Nagao & Masahiro Kitajima & Yuji Sakai & Xiang Zhang & Robert Vajtai & Pulickel Ajayan, 2022. "K-point longitudinal acoustic phonons are responsible for ultrafast intervalley scattering in monolayer MoSe2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Juan Francisco Gonzalez Marin & Dmitrii Unuchek & Zhe Sun & Cheol Yeon Cheon & Fedele Tagarelli & Kenji Watanabe & Takashi Taniguchi & Andras Kis, 2022. "Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Tostado-Véliz, Marcos & Horrillo-Quintero, Pablo & García-Triviño, Pablo & Fernández-Ramírez, Luis M. & Jurado, Francisco, 2024. "Optimal sitting and sizing of hydrogen refilling stations in distribution networks under locational marginal prices," Applied Energy, Elsevier, vol. 374(C).
    13. Fateme Mahdikhanysarvejahany & Daniel N. Shanks & Matthew Klein & Qian Wang & Michael R. Koehler & David G. Mandrus & Takashi Taniguchi & Kenji Watanabe & Oliver L. A. Monti & Brian J. LeRoy & John R., 2022. "Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    14. Zhen Lian & Dongxue Chen & Lei Ma & Yuze Meng & Ying Su & Li Yan & Xiong Huang & Qiran Wu & Xinyue Chen & Mark Blei & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Chuanwei Zhang & Yong-Tao , 2023. "Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Riya Sebait & Roberto Rosati & Seok Joon Yun & Krishna P. Dhakal & Samuel Brem & Chandan Biswas & Alexander Puretzky & Ermin Malic & Young Hee Lee, 2023. "Sequential order dependent dark-exciton modulation in bi-layered TMD heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Suman Chatterjee & Medha Dandu & Pushkar Dasika & Rabindra Biswas & Sarthak Das & Kenji Watanabe & Takashi Taniguchi & Varun Raghunathan & Kausik Majumdar, 2023. "Harmonic to anharmonic tuning of moiré potential leading to unconventional Stark effect and giant dipolar repulsion in WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Zehua Hu & Tanjung Krisnanda & Antonio Fieramosca & Jiaxin Zhao & Qianlu Sun & Yuzhong Chen & Haiyun Liu & Yuan Luo & Rui Su & Junyong Wang & Kenji Watanabe & Takashi Taniguchi & Goki Eda & Xiao Rensh, 2024. "Energy transfer driven brightening of MoS2 by ultrafast polariton relaxation in microcavity MoS2/hBN/WS2 heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. B. Arnoldi & S. L. Zachritz & S. Hedwig & M. Aeschlimann & O. L. A. Monti & B. Stadtmüller, 2024. "Revealing hidden spin polarization in centrosymmetric van der Waals materials on ultrafast timescales," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Beini Gao & Daniel G. Suárez-Forero & Supratik Sarkar & Tsung-Sheng Huang & Deric Session & Mahmoud Jalali Mehrabad & Ruihao Ni & Ming Xie & Pranshoo Upadhyay & Jonathan Vannucci & Sunil Mittal & Kenj, 2024. "Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48992-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.