IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59325-w.html
   My bibliography  Save this article

Moiré collective vibrations in atomically thin van der Waals superlattices

Author

Listed:
  • Lijia Li

    (Fudan University)

  • Jiajun Chen

    (Fudan University)

  • Laigui Hu

    (Fudan University)

  • Zhijun Qiu

    (Fudan University)

  • Zhuo Zou

    (Fudan University)

  • Ran Liu

    (Fudan University)

  • Lirong Zheng

    (Fudan University)

  • Chunxiao Cong

    (Fudan University
    Yiwu Research Institute of Fudan University)

Abstract

Collective vibration is pivotal for materials’ thermal, electrical, phase transition and topological properties. Lately, the rising of moiré superlattices, characterized by overarching periodicity of moiré pattern, generates highly tunable interfacial structures that manipulate collective excitations in material at the atomic scale. Here, we experimentally demonstrate moiré collective vibrations, the mechanical counterparts of moiré excitons, at heterointerfaces of twisted tungsten diselenide/tungsten disulfide heterobilayers. Using helicity-resolved inelastic Raman scattering, we find chiral interfacial phonons carrying angular momentum analogous to that of chiral bulk phonons in quartz, enabling unprecedented spectral resolution of rich vibrational modes at heterointerface in a few atomic layers. Upon mutual torsion of heterobilayers, we observe terahertz interlayer vibrations proportional to moiré periodicity as a periodic function of rotation angles, demonstrating moiré-tuned interlayer modes which couple to Coulomb-bound electron-hole pairs in interlayer moiré excitons. In low-angle strong coupling regime, interlayer dynamics exhibit a distinct long-lived breathing mode with zero angular momentum and pronounced high energy, highlighting phonon-hybridization character wherein intralayer breathing vibrations are folded into moiré mini-Brillouin zone by spatial periodicity and hybridize with interlayer vibrations. Our findings establish moiré collective vibrations as candidates for exploitation in energy-efficient thermal management, strongly correlated electrical engineering, and new emergent topological phononics.

Suggested Citation

  • Lijia Li & Jiajun Chen & Laigui Hu & Zhijun Qiu & Zhuo Zou & Ran Liu & Lirong Zheng & Chunxiao Cong, 2025. "Moiré collective vibrations in atomically thin van der Waals superlattices," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59325-w
    DOI: 10.1038/s41467-025-59325-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59325-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59325-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59325-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.