IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61347-3.html
   My bibliography  Save this article

Probing interplay of topological properties and electron correlation in TaIrTe4 via nonlinear Hall effect

Author

Listed:
  • Haotian Jiang

    (University of Wisconsin-Madison)

  • Tairan Xi

    (University of Wisconsin-Madison)

  • Jiangxu Li

    (University of Tennessee)

  • Yangchen He

    (University of Wisconsin-Madison)

  • Hongrui Ma

    (University of Wisconsin-Madison)

  • Yulu Mao

    (University of Wisconsin-Madison)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Daniel A. Rhodes

    (University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Yang Zhang

    (University of Tennessee
    University of Tennessee)

  • Jun Xiao

    (University of Wisconsin-Madison
    University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Ying Wang

    (University of Wisconsin-Madison
    University of Wisconsin-Madison
    University of Wisconsin-Madison)

Abstract

Studying the interplay of electron correlation and topology is crucial for discovering new quantum states, such as the fractional quantum spin Hall effect and topological superconductors. Unlike linear transport, nonlinear electrical responses, which encode both symmetry and topological features remain largely unexplored in systems with electron correlation and topology. Here we report that nonlinear Hall measurements reveal the emergence of a correlated state in few-layer topological semimetal TaIrTe₄ below a critical temperature and bias current. This state, exhibiting ultra large nonlinear conductivity, is attributed to the formation of a charge density wave in TaIrTe4 that leads to substantial Berry curvature redistribution. This origin is further supported by the observation of a Raman amplitude mode associated with the charge density wave, enhanced second harmonic generation, and first-principles calculations. Our findings demonstrate that nonlinear electrical probes can access rich phase diagrams in topological materials and highlight the potential of correlated topological systems for developing nonlinear electronics.

Suggested Citation

  • Haotian Jiang & Tairan Xi & Jiangxu Li & Yangchen He & Hongrui Ma & Yulu Mao & Takashi Taniguchi & Kenji Watanabe & Daniel A. Rhodes & Yang Zhang & Jun Xiao & Ying Wang, 2025. "Probing interplay of topological properties and electron correlation in TaIrTe4 via nonlinear Hall effect," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61347-3
    DOI: 10.1038/s41467-025-61347-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61347-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61347-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Wall & D. Wegkamp & L. Foglia & K. Appavoo & J. Nag & R.F. Haglund & J. Stähler & M. Wolf, 2012. "Ultrafast changes in lattice symmetry probed by coherent phonons," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    2. Yan Zhao & Zhengwei Nie & Hao Hong & Xia Qiu & Shiyi Han & Yue Yu & Mengxi Liu & Xiaohui Qiu & Kaihui Liu & Sheng Meng & Lianming Tong & Jin Zhang, 2023. "Spectroscopic visualization and phase manipulation of chiral charge density waves in 1T-TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. C. X. Trang & N. Shimamura & K. Nakayama & S. Souma & K. Sugawara & I. Watanabe & K. Yamauchi & T. Oguchi & K. Segawa & T. Takahashi & Yoichi Ando & T. Sato, 2020. "Conversion of a conventional superconductor into a topological superconductor by topological proximity effect," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    4. Lukas Mennel & Marco M. Furchi & Stefan Wachter & Matthias Paur & Dmitry K. Polyushkin & Thomas Mueller, 2018. "Optical imaging of strain in two-dimensional crystals," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    5. Ying Wang & Jun Xiao & Hanyu Zhu & Yao Li & Yousif Alsaid & King Yan Fong & Yao Zhou & Siqi Wang & Wu Shi & Yuan Wang & Alex Zettl & Evan J. Reed & Xiang Zhang, 2017. "Structural phase transition in monolayer MoTe2 driven by electrostatic doping," Nature, Nature, vol. 550(7677), pages 487-491, October.
    6. Z. Z. Du & C. M. Wang & Shuai Li & Hai-Zhou Lu & X. C. Xie, 2019. "Disorder-induced nonlinear Hall effect with time-reversal symmetry," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    7. Ilya Belopolski & Peng Yu & Daniel S. Sanchez & Yukiaki Ishida & Tay-Rong Chang & Songtian S. Zhang & Su-Yang Xu & Hao Zheng & Guoqing Chang & Guang Bian & Horng-Tay Jeng & Takeshi Kondo & Hsin Lin & , 2017. "Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    8. Qiong Ma & Su-Yang Xu & Huitao Shen & David MacNeill & Valla Fatemi & Tay-Rong Chang & Andrés M. Mier Valdivia & Sanfeng Wu & Zongzheng Du & Chuang-Han Hsu & Shiang Fang & Quinn D. Gibson & Kenji Wata, 2019. "Observation of the nonlinear Hall effect under time-reversal-symmetric conditions," Nature, Nature, vol. 565(7739), pages 337-342, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Cheng & Yang Gao & Zhi Zheng & Shuhang Chen & Zheng Liu & Ling Zhang & Qi Zhu & Hui Li & Lin Li & Changgan Zeng, 2024. "Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Shuaiqin Wu & Jie Deng & Xudong Wang & Jing Zhou & Hanxue Jiao & Qianru Zhao & Tie Lin & Hong Shen & Xiangjian Meng & Yan Chen & Junhao Chu & Jianlu Wang, 2024. "Polarization photodetectors with configurable polarity transition enabled by programmable ferroelectric-doping patterns," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Yuki M. Itahashi & Toshiya Ideue & Shintaro Hoshino & Chihiro Goto & Hiromasa Namiki & Takao Sasagawa & Yoshihiro Iwasa, 2022. "Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Teng Ma & Hao Chen & Kunihiro Yananose & Xin Zhou & Lin Wang & Runlai Li & Ziyu Zhu & Zhenyue Wu & Qing-Hua Xu & Jaejun Yu & Cheng Wei Qiu & Alessandro Stroppa & Kian Ping Loh, 2022. "Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Lujin Min & Hengxin Tan & Zhijian Xie & Leixin Miao & Ruoxi Zhang & Seng Huat Lee & Venkatraman Gopalan & Chao-Xing Liu & Nasim Alem & Binghai Yan & Zhiqiang Mao, 2023. "Strong room-temperature bulk nonlinear Hall effect in a spin-valley locked Dirac material," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Xiu Fang Lu & Cheng-Ping Zhang & Naizhou Wang & Dan Zhao & Xin Zhou & Weibo Gao & Xian Hui Chen & K. T. Law & Kian Ping Loh, 2024. "Nonlinear transport and radio frequency rectification in BiTeBr at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Zeya Li & Junwei Huang & Ling Zhou & Zian Xu & Feng Qin & Peng Chen & Xiaojun Sun & Gan Liu & Chengqi Sui & Caiyu Qiu & Yangfan Lu & Huiyang Gou & Xiaoxiang Xi & Toshiya Ideue & Peizhe Tang & Yoshihir, 2023. "An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Haiyuan Zhu & Jiayu Li & Xiaobing Chen & Yutong Yu & Qihang Liu, 2025. "Magnetic geometry induced quantum geometry and nonlinear transports," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    9. Zhiheng Huang & Yunfei Bai & Yanchong Zhao & Le Liu & Xuan Zhao & Jiangbin Wu & Kenji Watanabe & Takashi Taniguchi & Wei Yang & Dongxia Shi & Yang Xu & Tiantian Zhang & Qingming Zhang & Ping-Heng Tan , 2024. "Observation of phonon Stark effect," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Honglie Ning & Omar Mehio & Xinwei Li & Michael Buchhold & Mathias Driesse & Hengdi Zhao & Gang Cao & David Hsieh, 2023. "A coherent phonon-induced hidden quadrupolar ordered state in Ca2RuO4," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Suk Hyun Sung & Nishkarsh Agarwal & Ismail El Baggari & Patrick Kezer & Yin Min Goh & Noah Schnitzer & Jeremy M. Shen & Tony Chiang & Yu Liu & Wenjian Lu & Yuping Sun & Lena F. Kourkoutis & John T. He, 2024. "Endotaxial stabilization of 2D charge density waves with long-range order," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Hui Li & Chengping Zhang & Chengjie Zhou & Chen Ma & Xiao Lei & Zijing Jin & Hongtao He & Baikui Li & Kam Tuen Law & Jiannong Wang, 2024. "Quantum geometry quadrupole-induced third-order nonlinear transport in antiferromagnetic topological insulator MnBi2Te4," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Samra Husremović & Berit H. Goodge & Matthew P. Erodici & Katherine Inzani & Alberto Mier & Stephanie M. Ribet & Karen C. Bustillo & Takashi Taniguchi & Kenji Watanabe & Colin Ophus & Sinéad M. Griffi, 2023. "Encoding multistate charge order and chirality in endotaxial heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Fangchu Chen & Kamal Das & Bowen Yang & Chuangtang Wang & Shazhou Zhong & Diana Golovanova & He Ren & Tianyang Wang & Xuan Luo & Yuping Sun & Liuyan Zhao & Guo-Xing Miao & Binghai Yan & Adam W. Tsen, 2025. "Direct observation of distinct bulk and edge nonequilibrium spin accumulation in ultrathin MoTe2," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    18. Xin Sun & Kening Xiao & Yingdong Wei & Wenqi Mo & Libo Zhang & Shijian Tian & Xiaokai Pan & Yage Yang & Shiqi Lan & Yichong Zhang & Zhen Hu & Kaixuan Zhang & Li Han & Fang Wang & Xiaoshuang Chen & Lin, 2025. "Reconfigurable terahertz optoelectronic logic through charge-density-wave phase engineering," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Seyeong Cha & Giyeok Lee & Sol Lee & Sae Hee Ryu & Yeongsup Sohn & Gijeong An & Changmo Kang & Minsu Kim & Kwanpyo Kim & Aloysius Soon & Keun Su Kim, 2023. "Order-disorder phase transition driven by interlayer sliding in lead iodides," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Yudi Dai & Junlin Xiong & Yanfeng Ge & Bin Cheng & Lizheng Wang & Pengfei Wang & Zenglin Liu & Shengnan Yan & Cuiwei Zhang & Xianghan Xu & Youguo Shi & Sang-Wook Cheong & Cong Xiao & Shengyuan A. Yang, 2024. "Interfacial magnetic spin Hall effect in van der Waals Fe3GeTe2/MoTe2 heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61347-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.