IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10941-3.html
   My bibliography  Save this article

Disorder-induced nonlinear Hall effect with time-reversal symmetry

Author

Listed:
  • Z. Z. Du

    (Southern University of Science and Technology
    Shenzhen Key Laboratory of Quantum Science and Engineering
    Peng Cheng Laboratory)

  • C. M. Wang

    (Southern University of Science and Technology
    Shenzhen Key Laboratory of Quantum Science and Engineering
    Shanghai Normal University)

  • Shuai Li

    (Southern University of Science and Technology
    Shenzhen Key Laboratory of Quantum Science and Engineering)

  • Hai-Zhou Lu

    (Southern University of Science and Technology
    Shenzhen Key Laboratory of Quantum Science and Engineering
    Peng Cheng Laboratory
    Shanghai Jiao Tong University)

  • X. C. Xie

    (Peking University
    Beijing Academy of Quantum Information Sciences
    University of Chinese Academy of Sciences)

Abstract

The nonlinear Hall effect has opened the door towards deeper understanding of topological states of matter. Disorder plays indispensable roles in various linear Hall effects, such as the localization in the quantized Hall effects and the extrinsic mechanisms of the anomalous, spin, and valley Hall effects. Unlike in the linear Hall effects, disorder enters the nonlinear Hall effect even in the leading order. Here, we derive the formulas of the nonlinear Hall conductivity in the presence of disorder scattering. We apply the formulas to calculate the nonlinear Hall response of the tilted 2D Dirac model, which is the symmetry-allowed minimal model for the nonlinear Hall effect and can serve as a building block in realistic band structures. More importantly, we construct the general scaling law of the nonlinear Hall effect, which may help in experiments to distinguish disorder-induced contributions to the nonlinear Hall effect in the future.

Suggested Citation

  • Z. Z. Du & C. M. Wang & Shuai Li & Hai-Zhou Lu & X. C. Xie, 2019. "Disorder-induced nonlinear Hall effect with time-reversal symmetry," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10941-3
    DOI: 10.1038/s41467-019-10941-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10941-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10941-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuki M. Itahashi & Toshiya Ideue & Shintaro Hoshino & Chihiro Goto & Hiromasa Namiki & Takao Sasagawa & Yoshihiro Iwasa, 2022. "Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Teng Ma & Hao Chen & Kunihiro Yananose & Xin Zhou & Lin Wang & Runlai Li & Ziyu Zhu & Zhenyue Wu & Qing-Hua Xu & Jaejun Yu & Cheng Wei Qiu & Alessandro Stroppa & Kian Ping Loh, 2022. "Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Xiu Fang Lu & Cheng-Ping Zhang & Naizhou Wang & Dan Zhao & Xin Zhou & Weibo Gao & Xian Hui Chen & K. T. Law & Kian Ping Loh, 2024. "Nonlinear transport and radio frequency rectification in BiTeBr at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Lujin Min & Hengxin Tan & Zhijian Xie & Leixin Miao & Ruoxi Zhang & Seng Huat Lee & Venkatraman Gopalan & Chao-Xing Liu & Nasim Alem & Binghai Yan & Zhiqiang Mao, 2023. "Strong room-temperature bulk nonlinear Hall effect in a spin-valley locked Dirac material," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10941-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.