IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44021-4.html
   My bibliography  Save this article

A coherent phonon-induced hidden quadrupolar ordered state in Ca2RuO4

Author

Listed:
  • Honglie Ning

    (California Institute of Technology
    California Institute of Technology)

  • Omar Mehio

    (California Institute of Technology
    California Institute of Technology)

  • Xinwei Li

    (California Institute of Technology
    California Institute of Technology)

  • Michael Buchhold

    (Universität zu Köln)

  • Mathias Driesse

    (California Institute of Technology
    Humboldt-Universität zu Berlin)

  • Hengdi Zhao

    (University of Colorado)

  • Gang Cao

    (University of Colorado)

  • David Hsieh

    (California Institute of Technology
    California Institute of Technology)

Abstract

Ultrafast laser excitation provides a means to transiently realize long-range ordered electronic states of matter that are hidden in thermal equilibrium. Recently, this approach has unveiled a variety of thermally inaccessible ordered states in strongly correlated materials, including charge density wave, ferroelectric, magnetic, and intertwined charge-orbital ordered states. However, more exotic hidden states exhibiting higher multipolar ordering remain elusive owing to the challenge of directly manipulating and detecting them with light. Here we demonstrate a method to induce a dynamical transition from a thermally allowed to a thermally forbidden spin-orbit entangled quadrupolar ordered state in Ca2RuO4 by coherently exciting a phonon that is strongly coupled to the order parameter. Combining probe photon energy-resolved coherent phonon spectroscopy measurements with model Hamiltonian calculations, we show that the dynamical transition is manifested through anomalies in the temperature, pump excitation fluence, and probe photon energy dependence of the strongly coupled phonon. With this procedure, we introduce a general pathway to uncover hidden multipolar ordered states and to control their re-orientation on ultrashort timescales.

Suggested Citation

  • Honglie Ning & Omar Mehio & Xinwei Li & Michael Buchhold & Mathias Driesse & Hengdi Zhao & Gang Cao & David Hsieh, 2023. "A coherent phonon-induced hidden quadrupolar ordered state in Ca2RuO4," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44021-4
    DOI: 10.1038/s41467-023-44021-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44021-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44021-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Wall & D. Wegkamp & L. Foglia & K. Appavoo & J. Nag & R.F. Haglund & J. Stähler & M. Wolf, 2012. "Ultrafast changes in lattice symmetry probed by coherent phonons," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    2. Edbert J. Sie & Clara M. Nyby & C. D. Pemmaraju & Su Ji Park & Xiaozhe Shen & Jie Yang & Matthias C. Hoffmann & B. K. Ofori-Okai & Renkai Li & Alexander H. Reid & Stephen Weathersby & Ehren Mannebach , 2019. "An ultrafast symmetry switch in a Weyl semimetal," Nature, Nature, vol. 565(7737), pages 61-66, January.
    3. Tianqi Li & Aaron Patz & Leonidas Mouchliadis & Jiaqiang Yan & Thomas A. Lograsso & Ilias E. Perakis & Jigang Wang, 2013. "Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations," Nature, Nature, vol. 496(7443), pages 69-73, April.
    4. Jiajun Li & Hugo U. R. Strand & Philipp Werner & Martin Eckstein, 2018. "Theory of photoinduced ultrafast switching to a spin-orbital ordered hidden phase," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Chen & Charles Paillard & Hong Jian Zhao & Jorge Íñiguez & Laurent Bellaiche, 2022. "Deterministic control of ferroelectric polarization by ultrafast laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Chenhang Xu & Cheng Jin & Zijing Chen & Qi Lu & Yun Cheng & Bo Zhang & Fengfeng Qi & Jiajun Chen & Xunqing Yin & Guohua Wang & Dao Xiang & Dong Qian, 2023. "Transient dynamics of the phase transition in VO2 revealed by mega-electron-volt ultrafast electron diffraction," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Yiran Ding & Mengqi Zeng & Qijing Zheng & Jiaqian Zhang & Ding Xu & Weiyin Chen & Chenyang Wang & Shulin Chen & Yingying Xie & Yu Ding & Shuting Zheng & Jin Zhao & Peng Gao & Lei Fu, 2021. "Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Bing Cheng & Di Cheng & Tao Jiang & Wei Xia & Boqun Song & Martin Mootz & Liang Luo & Ilias E. Perakis & Yongxin Yao & Yanfeng Guo & Jigang Wang, 2024. "Chirality manipulation of ultrafast phase switches in a correlated CDW-Weyl semimetal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. C. Huang & L. Luo & M. Mootz & J. Shang & P. Man & L. Su & I. E. Perakis & Y. X. Yao & A. Wu & J. Wang, 2024. "Extreme terahertz magnon multiplication induced by resonant magnetic pulse pairs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Tatsuya Miyamoto & Akihiro Kondo & Takeshi Inaba & Takeshi Morimoto & Shijia You & Hiroshi Okamoto, 2023. "Terahertz radiation by quantum interference of excitons in a one-dimensional Mott insulator," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Nathan C. Drucker & Thanh Nguyen & Fei Han & Phum Siriviboon & Xi Luo & Nina Andrejevic & Ziming Zhu & Grigory Bednik & Quynh T. Nguyen & Zhantao Chen & Linh K. Nguyen & Tongtong Liu & Travis J. Willi, 2023. "Topology stabilized fluctuations in a magnetic nodal semimetal," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Jiaojian Shi & Ya-Qing Bie & Alfred Zong & Shiang Fang & Wei Chen & Jinchi Han & Zhaolong Cao & Yong Zhang & Takashi Taniguchi & Kenji Watanabe & Xuewen Fu & Vladimir Bulović & Efthimios Kaxiras & Edo, 2023. "Intrinsic 1 $${T}^{{\prime} }$$ T ′ phase induced in atomically thin 2H-MoTe2 by a single terahertz pulse," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. James L. Hart & Lopa Bhatt & Yanbing Zhu & Myung-Geun Han & Elisabeth Bianco & Shunran Li & David J. Hynek & John A. Schneeloch & Yu Tao & Despina Louca & Peijun Guo & Yimei Zhu & Felipe Jornada & Eva, 2023. "Emergent layer stacking arrangements in c-axis confined MoTe2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44021-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.