Author
Listed:
- Qinghai Tan
(Nanyang Technological University
University of Science and Technology of China)
- Abdullah Rasmita
(Nanyang Technological University
Nanyang Technological University)
- Zhaowei Zhang
(Nanyang Technological University)
- Xuran Dai
(Nanyang Technological University)
- Ruihua He
(Nanyang Technological University)
- Xiangbin Cai
(Nanyang Technological University)
- Kenji Watanabe
(National Institute for Materials Science)
- Takashi Taniguchi
(National Institute for Materials Science)
- Hongbing Cai
(Nanyang Technological University
University of Science and Technology of China)
- Wei-bo Gao
(Nanyang Technological University
Nanyang Technological University
Nanyang Technological University
Nanyang Technological University)
Abstract
Moiré superlattices in van der Waals materials have emerged as a promising platform for studying the correlated states in condensed matter physics. These correlated states have substantial effects on the emission coherence, an important parameter for quantum light applications. However, the effect of correlated states on the excitonic emission coherence is largely unexplored. Here, we show that the coherence of moiré interlayer exciton emission in tungsten diselenide (WSe2)/molybdenum disulfide (MoS2) heterobilayers is sensitive to the correlated insulating states in this material. We demonstrate that the emission linewidth of interlayer exciton shows a dip at a particular power range, which we attributed to the excitonic (bosonic) interaction. Moreover, such linewidth minima also appear in the doping dependence of the photoluminescence spectrum at the integer electronic filling factor, fel = 1, demonstrating the effect of the electronic (fermionic) correlated insulating state on the interlayer exciton emission coherence. Our results demonstrate the richness of exciton-exciton and exciton-electron interactions in moiré semiconductors and pave the way for engineering emission coherence by controlling such interactions.
Suggested Citation
Qinghai Tan & Abdullah Rasmita & Zhaowei Zhang & Xuran Dai & Ruihua He & Xiangbin Cai & Kenji Watanabe & Takashi Taniguchi & Hongbing Cai & Wei-bo Gao, 2025.
"Enhanced coherence from correlated states in WSe2/MoS2 moiré heterobilayer,"
Nature Communications, Nature, vol. 16(1), pages 1-7, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57391-8
DOI: 10.1038/s41467-025-57391-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57391-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.