IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43754-6.html
   My bibliography  Save this article

Quantifying global colonization pressures of alien vertebrates from wildlife trade

Author

Listed:
  • Yiming Li

    (Hebei University
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Tim M. Blackburn

    (University College London
    Zoological Society of London, Regent’s Park)

  • Zexu Luo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Tianjian Song

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Freyja Watters

    (University of Adelaide)

  • Wenhao Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Teng Deng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhenhua Luo

    (Central China Normal University)

  • Yuanyi Li

    (Hebei University)

  • Jiacong Du

    (Hebei University)

  • Meiling Niu

    (Hebei University)

  • Jun Zhang

    (Hebei University)

  • Jinyu Zhang

    (Hebei University)

  • Jiaxue Yang

    (Hebei University)

  • Siqi Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The global trade in live wildlife elevates the risk of biological invasions by increasing colonization pressure (the number of alien species introduced to an area). Yet, our understanding of species traded as aliens remains limited. We created a comprehensive global database on live terrestrial vertebrate trade and use it to investigate the number of traded alien species, and correlates of establishment richness for aliens. We identify 7,780 species involved in this trade globally. Approximately 85.7% of these species are traded as aliens, and 12.2% of aliens establish populations. Countries with greater trading power, higher incomes, and larger human populations import more alien species. These countries, along with island nations, emerge as hotspots for establishment richness of aliens. Colonization pressure and insularity consistently promote establishment richness across countries, while socio-economic factors impact specific taxa. Governments must prioritize policies to mitigate the release or escape of traded animals and protect global biosecurity.

Suggested Citation

  • Yiming Li & Tim M. Blackburn & Zexu Luo & Tianjian Song & Freyja Watters & Wenhao Li & Teng Deng & Zhenhua Luo & Yuanyi Li & Jiacong Du & Meiling Niu & Jun Zhang & Jinyu Zhang & Jiaxue Yang & Siqi Wan, 2023. "Quantifying global colonization pressures of alien vertebrates from wildlife trade," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43754-6
    DOI: 10.1038/s41467-023-43754-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43754-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43754-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin M. Marshall & Colin Strine & Alice C. Hughes, 2020. "Thousands of reptile species threatened by under-regulated global trade," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. David W. Redding & Alex L. Pigot & Ellie E. Dyer & Çağan H. Şekercioğlu & Salit Kark & Tim M. Blackburn, 2019. "Location-level processes drive the establishment of alien bird populations worldwide," Nature, Nature, vol. 571(7763), pages 103-106, July.
    3. Mills, Julianne H. & Waite, Thomas A., 2009. "Economic prosperity, biodiversity conservation, and the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 68(7), pages 2087-2095, May.
    4. Phillip Cassey & Steven Delean & Julie L Lockwood & Jason S Sadowski & Tim M Blackburn, 2018. "Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect," PLOS Biology, Public Library of Science, vol. 16(4), pages 1-15, April.
    5. Dilys Roe & Tien Ming Lee, 2021. "Possible negative consequences of a wildlife trade ban," Nature Sustainability, Nature, vol. 4(1), pages 5-6, January.
    6. Xuan Liu & Tim M. Blackburn & Tianjian Song & Xuyu Wang & Cong Huang & Yiming Li, 2020. "Animal invaders threaten protected areas worldwide," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Sean L. Maxwell & Richard A. Fuller & Thomas M. Brooks & James E. M. Watson, 2016. "Biodiversity: The ravages of guns, nets and bulldozers," Nature, Nature, vol. 536(7615), pages 143-145, August.
    8. Regan Early & Bethany A. Bradley & Jeffrey S. Dukes & Joshua J. Lawler & Julian D. Olden & Dana M. Blumenthal & Patrick Gonzalez & Edwin D. Grosholz & Ines Ibañez & Luke P. Miller & Cascade J. B. Sort, 2016. "Global threats from invasive alien species in the twenty-first century and national response capacities," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daijun Liu & Philipp Semenchuk & Franz Essl & Bernd Lenzner & Dietmar Moser & Tim M. Blackburn & Phillip Cassey & Dino Biancolini & César Capinha & Wayne Dawson & Ellie E. Dyer & Benoit Guénard & Evan, 2023. "The impact of land use on non-native species incidence and number in local assemblages worldwide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    3. Qing Zhang & Yanping Wang & Xuan Liu, 2024. "Risk of introduction and establishment of alien vertebrate species in transboundary neighboring areas," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Kristian Steensen Nielsen & Theresa M. Marteau & Jan M. Bauer & Richard B. Bradbury & Steven Broad & Gayle Burgess & Mark Burgman & Hilary Byerly & Susan Clayton & Dulce Espelosin & Paul J. Ferraro & , 2021. "Biodiversity conservation as a promising frontier for behavioural science," Nature Human Behaviour, Nature, vol. 5(5), pages 550-556, May.
    5. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    7. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    8. Samargandi, Nahla, 2017. "Sector value addition, technology and CO2 emissions in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 868-877.
    9. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    10. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.
    11. Alka Chaudhary & Mriganka Shekhar Sarkar & Bhupendra Singh Adhikari & Gopal Singh Rawat, 2021. "Ageratina adenophora and Lantana camara in Kailash Sacred Landscape, India: Current distribution and future climatic scenarios through modeling," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-15, May.
    12. Iritie, Jean-Jacques, 2015. "Economic Growth, Biodiversity and Conservation Policies in Africa: an Overview," MPRA Paper 62005, University Library of Munich, Germany.
    13. Song, Ma-Lin & Zhang, Wei & Wang, Shu-Hong, 2013. "Inflection point of environmental Kuznets curve in Mainland China," Energy Policy, Elsevier, vol. 57(C), pages 14-20.
    14. Lin Zhang & Jason Rohr & Ruina Cui & Yusi Xin & Lixia Han & Xiaona Yang & Shimin Gu & Yuanbao Du & Jing Liang & Xuyu Wang & Zhengjun Wu & Qin Hao & Xuan Liu, 2022. "Biological invasions facilitate zoonotic disease emergences," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Mumbunan, Sonny & Maitri, Ni Made Rahayu, 2022. "A Review of Basic Income for Nature and Climate," OSF Preprints bre43, Center for Open Science.
    16. Gyan Charitha de Silva & Eugenie Christine Regan & Edward Henry Beattie Pollard & Prue Frances Elizabeth Addison, 2019. "The evolution of corporate no net loss and net positive impact biodiversity commitments: Understanding appetite and addressing challenges," Business Strategy and the Environment, Wiley Blackwell, vol. 28(7), pages 1481-1495, November.
    17. Iritié, Bi Goli Jean Jacques, 2015. "Economic growth and biodiversity: An overview. Conservation policies in Africa," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 8(2), pages 196-208.
    18. Mills Busa, Julianne H., 2013. "Dynamite in the EKC tunnel? Inconsistencies in resource stock analysis under the environmental Kuznets curve hypothesis," Ecological Economics, Elsevier, vol. 94(C), pages 116-126.
    19. R. C. Rodríguez-Caro & E. Graciá & S. P. Blomberg & H. Cayuela & M. Grace & C. P. Carmona & H. A. Pérez-Mendoza & A. Giménez & R. Salguero-Gómez, 2023. "Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Fabrício Otávio do Nascimento Pereira & Graciliano Galdino Alves dos Santos & Anderson Borges Serra & Cleuton Lima Miranda & Guilherme da Silva Araújo & Emil José Hernández Ruz, 2023. "Composition of the Anuran Community in a Forest Management Area in Southeastern Amazonia," Land, MDPI, vol. 12(7), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43754-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.