Sintering-induced cation displacement in protonic ceramics and way for its suppression
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-43725-x
Download full text from publisher
References listed on IDEAS
- Yuan Zhang & Bin Chen & Daqin Guan & Meigui Xu & Ran Ran & Meng Ni & Wei Zhou & Ryan O’Hayre & Zongping Shao, 2021. "Thermal-expansion offset for high-performance fuel cell cathodes," Nature, Nature, vol. 591(7849), pages 246-251, March.
- Kai Pei & Yucun Zhou & Kang Xu & Hua Zhang & Yong Ding & Bote Zhao & Wei Yuan & Kotaro Sasaki & YongMan Choi & Yu Chen & Meilin Liu, 2022. "Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Chuancheng Duan & Robert Kee & Huayang Zhu & Neal Sullivan & Liangzhu Zhu & Liuzhen Bian & Dylan Jennings & Ryan O’Hayre, 2019. "Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production," Nature Energy, Nature, vol. 4(3), pages 230-240, March.
- Kiho Bae & Dong Young Jang & Hyung Jong Choi & Donghwan Kim & Jongsup Hong & Byung-Kook Kim & Jong-Ho Lee & Ji-Won Son & Joon Hyung Shim, 2017. "Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
- Wenjuan Bian & Wei Wu & Baoming Wang & Wei Tang & Meng Zhou & Congrui Jin & Hanping Ding & Weiwei Fan & Yanhao Dong & Ju Li & Dong Ding, 2022. "Revitalizing interface in protonic ceramic cells by acid etch," Nature, Nature, vol. 604(7906), pages 479-485, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Haobo Li & Yicheng Zhu & Zihan Zhao & Ruixin Ma & Jiachen Lu & Wenjie Wan & Qianli Chen, 2025. "Mid-infrared light resonance-enhanced proton conductivity in ceramics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zuoqing Liu & Yuesheng Bai & Hainan Sun & Daqin Guan & Wenhuai Li & Wei-Hsiang Huang & Chih-Wen Pao & Zhiwei Hu & Guangming Yang & Yinlong Zhu & Ran Ran & Wei Zhou & Zongping Shao, 2024. "Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Li, Kunpeng & Murakami, Takeru & Nagata, Yohei & Mikami, Yuichi & Yamauchi, Kosuke & Kuroha, Tomohiro & Okuyama, Yuji & Mizutani, Yasunobu & Mori, Masashi & Araki, Takuto, 2025. "What kind of PCFC material physical property values do we need? —From a system efficiency perspective," Applied Energy, Elsevier, vol. 381(C).
- Hanchen Tian & Wei Li & Yueh-Lin Lee & Hongkui Zheng & Qingyuan Li & Liang Ma & Debangsu Bhattacharyya & Xiujuan Chen & Dawei Zhang & Guosheng Li & Yi Wang & Li Li & Qingsong Wang & Fang Xia & Muhamme, 2025. "Conformally coated scaffold design using water-tolerant Pr1.8Ba0.2NiO4.1 for protonic ceramic electrochemical cells with 5,000-h electrolysis stability," Nature Energy, Nature, vol. 10(7), pages 890-903, July.
- Lei, Libin & Mo, Yingyu & Huang, Yue & Qiu, Ruiming & Tian, Zhipeng & Wang, Junyao & Liu, Jianping & Chen, Ying & Zhang, Jihao & Tao, Zetian & Liang, Bo & Wang, Chao, 2023. "Revealing and quantifying the role of oxygen-ionic current in proton-conducting solid oxide fuel cells: A modeling study," Energy, Elsevier, vol. 276(C).
- Chang, Wanhyuk & Kang, Eun Heui & Jeong, Heon Jun & Choi, Wonjoon & Shim, Joon Hyung, 2023. "Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells," Energy, Elsevier, vol. 268(C).
- Yuan Zhang & Zhipeng Liu & Junbiao Li & Kuiwu Lin & Daqin Guan & Yufei Song & Guangming Yang & Wei Zhou & Jingjie Ge & Minhua Shao & Bin Chen & Meng Ni & Zongping Shao & Heping Xie, 2025. "Interfacial oxide wedging for mechanical-robust electrode in high-temperature ceramic cells," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Dongfeng Li & Ruifang Wei & Deyun Zhang & Chenwei Ni & Heng Yin & Lingcong Zhang & Fengtao Fan & Xiuli Wang & Can Li, 2025. "Determining kinetics of H2O2 evolution from photoelectrochemical water oxidation," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
- Guk, Erdogan & Venkatesan, Vijay & Babar, Shumaila & Jackson, Lisa & Kim, Jung-Sik, 2019. "Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell," Applied Energy, Elsevier, vol. 241(C), pages 164-173.
- Serdar Yilmaz & Bekir Kavici & Prakash Ramakrishnan & Cigdem Celen & Bahman Amini Horri, 2023. "Highly Conductive Cerium- and Neodymium-Doped Barium Zirconate Perovskites for Protonic Ceramic Fuel Cells," Energies, MDPI, vol. 16(11), pages 1-14, May.
- Gao, Juntao & Ma, Dan & Zhao, Hui & Li, Qiang & Lü, Zhe & Wei, Bo, 2022. "Synergistically improving electrocatalytic performance and CO2 tolerance of Fe-based cathode catalysts for solid oxide fuel cells," Energy, Elsevier, vol. 252(C).
- Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Gür, Turgut M., 2024. "Giga-ton and tera-watt scale challenges at the energy - climate crossroads: A global perspective," Energy, Elsevier, vol. 290(C).
- Xia, Lei & Khosravi, Ali & Han, Minfang & Sun, Li, 2025. "Modelica based hybrid-dimensional dynamic modeling, multi-objective optimization and thermodynamic analysis of cross-flow SOFC system," Renewable Energy, Elsevier, vol. 241(C).
- Choi, Sung Min & An, Hyegsoon & Yoon, Kyung Joong & Kim, Byung-Kook & Lee, Hae-Weon & Son, Ji-Won & Kim, Hyoungchul & Shin, Dongwook & Ji, Ho-Il & Lee, Jong-Ho, 2019. "Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte," Applied Energy, Elsevier, vol. 233, pages 29-36.
- Jolaoso, Lateef A. & Yousuf, Abu & Liu, Fan & Duan, Chuancheng & Kazempoor, Pejman, 2024. "Efficient Energy Storage via Methane Production Using Protonic Ceramic Electrochemical Cells," Applied Energy, Elsevier, vol. 369(C).
- Zhiheng Li & Xin Mao & Desheng Feng & Mengran Li & Xiaoyong Xu & Yadan Luo & Linzhou Zhuang & Rijia Lin & Tianjiu Zhu & Fengli Liang & Zi Huang & Dong Liu & Zifeng Yan & Aijun Du & Zongping Shao & Zho, 2024. "Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Zhu, Haojie & Li, Junbiao & Zhang, Yuan & Liu, Zhipeng & You, Junda & Ma, Guoqing & Fu, Ling & Hao, Senran & Yang, Hongxin & Zhai, Shuo & Wang, Pengfei & Zhu, Jing & Shen, Suling & Chen, Jialiang & Te, 2025. "Hydrogen, methane and power tri-generation from coal-based fuels in protonic ceramic fuel cells," Energy, Elsevier, vol. 323(C).
- Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.
- Zhongsheng Dai & Zhujie Li & Renjie Chen & Feng Wu & Li Li, 2023. "Defective oxygen inert phase stabilized high-voltage nickel-rich cathode for high-energy lithium-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Lu, Lianmei & Liu, Wu & Wang, Jianxin & Wang, Yudong & Xia, Changrong & Zhou, Xiao-Dong & Chen, Ming & Guan, Wanbing, 2020. "Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes," Applied Energy, Elsevier, vol. 259(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43725-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43725-x.html