IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42529-3.html
   My bibliography  Save this article

Prolonged hydrogen production by engineered green algae photovoltaic power stations

Author

Listed:
  • Hyo Jin Gwon

    (Yonsei University)

  • Geonwoo Park

    (Yonsei University)

  • JaeHyoung Yun

    (Yonsei University)

  • WonHyoung Ryu

    (Yonsei University)

  • Hyun S. Ahn

    (Yonsei University)

Abstract

Interest in securing energy production channels from renewable sources is higher than ever due to the daily observation of the impacts of climate change. A key renewable energy harvesting strategy achieving carbon neutral cycles is artificial photosynthesis. Solar-to-fuel routes thus far relied on elaborately crafted semiconductors, undermining the cost-efficiency of the system. Furthermore, fuels produced required separation prior to utilization. As an artificial photosynthesis design, here we demonstrate the conversion of swimming green algae into photovoltaic power stations. The engineered algae exhibit bioelectrogenesis, en route to energy storage in hydrogen. Notably, fuel formation requires no additives or external bias other than CO2 and sunlight. The cellular power stations autoregulate the oxygen level during artificial photosynthesis, granting immediate utility of the photosynthetic hydrogen without separation. The fuel production scales linearly with the reactor volume, which is a necessary trait for contributing to the large-scale renewable energy portfolio.

Suggested Citation

  • Hyo Jin Gwon & Geonwoo Park & JaeHyoung Yun & WonHyoung Ryu & Hyun S. Ahn, 2023. "Prolonged hydrogen production by engineered green algae photovoltaic power stations," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42529-3
    DOI: 10.1038/s41467-023-42529-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42529-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42529-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew D. Ooms & Cao Thang Dinh & Edward H. Sargent & David Sinton, 2016. "Photon management for augmented photosynthesis," Nature Communications, Nature, vol. 7(1), pages 1-13, November.
    2. Jens Appel & Vanessa Hueren & Marko Boehm & Kirstin Gutekunst, 2020. "Cyanobacterial in vivo solar hydrogen production using a photosystem I–hydrogenase (PsaD-HoxYH) fusion complex," Nature Energy, Nature, vol. 5(6), pages 458-467, June.
    3. Qian Wang & Chanon Pornrungroj & Stuart Linley & Erwin Reisner, 2022. "Strategies to improve light utilization in solar fuel synthesis," Nature Energy, Nature, vol. 7(1), pages 13-24, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Hao & Zhang, Xinru & Jiang, Zeyi & Wang, Xinyu & Wang, Yi & Cao, Limei & Zhang, Xinxin, 2020. "Effect of light spectra on microalgal biofilm: Cell growth, photosynthetic property, and main organic composition," Renewable Energy, Elsevier, vol. 157(C), pages 83-89.
    2. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    3. Enrico Orsi & Pablo Ivan Nikel & Lars Keld Nielsen & Stefano Donati, 2023. "Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Jiang, Liqun & Li, Yizhen & Pei, Haiyan, 2021. "Algal–bacterial consortia for bioproduct generation and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Paraskevi Psachoulia & Christos Chatzidoukas, 2021. "Illumination Policies for Stichococcus sp. Cultures in an Optimally Operating Lab-Scale PBR toward the Directed Photosynthetic Production of Desired Products," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    6. Abreu, Ana P. & Morais, Rui C. & Teixeira, José A. & Nunes, João, 2022. "A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Tanvir, Rahamat Ullah & Zhang, Jianying & Canter, Timothy & Chen, Dick & Lu, Jingrang & Hu, Zhiqiang, 2021. "Harnessing solar energy using phototrophic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Karel Petera & Štěpán Papáček & Cristian Inostroza González & José María Fernández-Sevilla & Francisco Gabriel Acién Fernández, 2021. "Advanced Computational Fluid Dynamics Study of the Dissolved Oxygen Concentration within a Thin-Layer Cascade Reactor for Microalgae Cultivation," Energies, MDPI, vol. 14(21), pages 1-11, November.
    9. Singh, Neha & Agarwal, Swati & Jain, Avni & Khan, Suphiya, 2021. "3-Dimensional cross linked hydrophilic polymeric network “hydrogels”: An agriculture boom," Agricultural Water Management, Elsevier, vol. 253(C).
    10. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    11. Talebzadeh, Nima & Rostami, Mohsen & O’Brien, Paul G., 2021. "Elliptic paraboloid-based solar spectrum splitters for self-powered photobioreactors," Renewable Energy, Elsevier, vol. 163(C), pages 1773-1785.
    12. Nima Talebzadeh & Paul G. O’Brien, 2021. "Elliptic Array Luminescent Solar Concentrators for Combined Power Generation and Microalgae Growth," Energies, MDPI, vol. 14(17), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42529-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.