IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v146y2021ics136403212100469x.html
   My bibliography  Save this article

Harnessing solar energy using phototrophic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions

Author

Listed:
  • Tanvir, Rahamat Ullah
  • Zhang, Jianying
  • Canter, Timothy
  • Chen, Dick
  • Lu, Jingrang
  • Hu, Zhiqiang

Abstract

Phototrophic microorganisms (microbial phototrophs) use light as an energy source to carry out various metabolic processes producing biomaterials and bioenergy and supporting their own growth. Among them, microalgae and cyanobacteria have been utilized extensively for bioenergy, biomaterials, and environmental applications. Their superior photosynthetic efficiency, lipid content, and shorter cultivation time compared to terrestrial biomass make them more suitable for efficient production of bioenergy and biomaterials. Other phototrophic microorganisms, especially anoxygenic phototrophs, demonstrated the ability to survive and flourish while producing renewable energy and high-value products under harsh environmental conditions. This review presents a comprehensive overview of microbial phototrophs on their (i) production of bioenergy and biomaterials, (ii) emerging and innovative applications for environmental conservation, mitigation, and remediation, and (iii) physical, genetic, and metabolic pathways to improve light harvesting and biomass/biofuel/biomaterial production. Both physical (e.g., incremental irradiation) and genetic approaches (e.g., truncated antenna) are implemented to increase the light-harvesting efficiency. Increases in biomass yield and metabolic products are possible through the manipulation of metabolic pathways and selection of a proper strain under optimal cultivation conditions and downstream processing, including harvesting, extraction, and purification. Finally, the current barriers in harnessing solar energy using phototrophic microorganisms are presented, and future research perspectives are discussed, such as integrating phototrophic microorganisms with emerging technologies.

Suggested Citation

  • Tanvir, Rahamat Ullah & Zhang, Jianying & Canter, Timothy & Chen, Dick & Lu, Jingrang & Hu, Zhiqiang, 2021. "Harnessing solar energy using phototrophic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:rensus:v:146:y:2021:i:c:s136403212100469x
    DOI: 10.1016/j.rser.2021.111181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100469X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huawei Zhu & Hengkai Meng & Wei Zhang & Haichun Gao & Jie Zhou & Yanping Zhang & Yin Li, 2019. "Development of a longevous two-species biophotovoltaics with constrained electron flow," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Xiaoguo Liu & Fei Zhang & Xinxin Jing & Muchen Pan & Pi Liu & Wei Li & Bowen Zhu & Jiang Li & Hong Chen & Lihua Wang & Jianping Lin & Yan Liu & Dongyuan Zhao & Hao Yan & Chunhai Fan, 2018. "Complex silica composite nanomaterials templated with DNA origami," Nature, Nature, vol. 559(7715), pages 593-598, July.
    4. Matthew D. Ooms & Cao Thang Dinh & Edward H. Sargent & David Sinton, 2016. "Photon management for augmented photosynthesis," Nature Communications, Nature, vol. 7(1), pages 1-13, November.
    5. Rajneesh, & Singh, Shailendra P. & Pathak, Jainendra & Sinha, Rajeshwer P., 2017. "Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 578-595.
    6. Akroum-Amrouche, Dahbia & Abdi, Nadia & Lounici, Hakim & Mameri, Nabil, 2011. "Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6," Applied Energy, Elsevier, vol. 88(6), pages 2130-2135, June.
    7. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    8. Chen, Huihui & Zhou, Dong & Luo, Gang & Zhang, Shicheng & Chen, Jianmin, 2015. "Macroalgae for biofuels production: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 427-437.
    9. Okoro, Victor & Azimov, Ulugbek & Munoz, Jose & Hernandez, Hector H. & Phan, Anh N., 2019. "Microalgae cultivation and harvesting: Growth performance and use of flocculants - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Rizwan, Muhammad & Mujtaba, Ghulam & Memon, Sheraz Ahmed & Lee, Kisay & Rashid, Naim, 2018. "Exploring the potential of microalgae for new biotechnology applications and beyond: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 394-404.
    11. Tijani, Hamzat & Abdullah, Norhayati & Yuzir, Ali, 2015. "Integration of microalgae biomass in biomethanation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1610-1622.
    12. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    13. Saba, Beenish & Christy, Ann D. & Yu, Zhongtang & Co, Anne C., 2017. "Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 75-84.
    14. Kadi L. Saar & Paolo Bombelli & David J. Lea-Smith & Toby Call & Eva-Mari Aro & Thomas Müller & Christopher J. Howe & Tuomas P. J. Knowles, 2018. "Enhancing power density of biophotovoltaics by decoupling storage and power delivery," Nature Energy, Nature, vol. 3(1), pages 75-81, January.
    15. Zhu, L.D. & Hiltunen, E. & Antila, E. & Zhong, J.J. & Yuan, Z.H. & Wang, Z.M., 2014. "Microalgal biofuels: Flexible bioenergies for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1035-1046.
    16. Majidian, Parastoo & Tabatabaei, Meisam & Zeinolabedini, Mehrshad & Naghshbandi, Mohammad Pooya & Chisti, Yusuf, 2018. "Metabolic engineering of microorganisms for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3863-3885.
    17. D. Ryan Georgianna & Stephen P. Mayfield, 2012. "Exploiting diversity and synthetic biology for the production of algal biofuels," Nature, Nature, vol. 488(7411), pages 329-335, August.
    18. Faried, M. & Samer, M. & Abdelsalam, E. & Yousef, R.S. & Attia, Y.A. & Ali, A.S., 2017. "Biodiesel production from microalgae: Processes, technologies and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 893-913.
    19. Daroch, Maurycy & Geng, Shu & Wang, Guangyi, 2013. "Recent advances in liquid biofuel production from algal feedstocks," Applied Energy, Elsevier, vol. 102(C), pages 1371-1381.
    20. Lim, Yi An & Chong, Meng Nan & Foo, Su Chern & Ilankoon, I.M.S.K., 2021. "Analysis of direct and indirect quantification methods of CO2 fixation via microalgae cultivation in photobioreactors: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    21. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    22. Bahadar, Ali & Bilal Khan, M., 2013. "Progress in energy from microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 128-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bing & Li, Wei & Guo, Yuan & Zhang, Zhiqiang & Shi, Wenxin & Cui, Fuyi & Lens, Piet N.L. & Tay, Joo Hwa, 2020. "Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Abreu, Ana P. & Morais, Rui C. & Teixeira, José A. & Nunes, João, 2022. "A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Shokravi, Zahra & Shokravi, Hoofar & Atabani, A.E. & Lau, Woei Jye & Chyuan, Ong Hwai & Ismail, Ahmad Fauzi, 2022. "Impacts of the harvesting process on microalgae fatty acid profiles and lipid yields: Implications for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    5. Chiu-Mei Kuo & Yu-Ling Sun & Cheng-Han Lin & Chao-Hsu Lin & Hsi-Tien Wu & Chih-Sheng Lin, 2021. "Cultivation and Biorefinery of Microalgae ( Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review," Sustainability, MDPI, vol. 13(23), pages 1-30, December.
    6. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    7. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    8. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    9. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    10. Wang, Haowei & Zhu, Huawei & Zhang, Yanping & Li, Yin, 2024. "Boosting electricity generation in biophotovoltaics through nanomaterials targeting specific cellular locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    11. Singh, Kripal & Ansari, Faiz Ahmad & Ingle, Kapilkumar Nivrutti & Gupta, Sanjay Kumar & Ahirwal, Jitendra & Dhyani, Shalini & Singh, Shraddha & Abhilash, P.C. & Rawat, Ismael & Byun, Chaeho & Bux, Fai, 2023. "Microalgae from wastewaters to wastelands: Leveraging microalgal research conducive to achieve the UN Sustainable Development Goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    13. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    14. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    15. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Suparmaniam, Uganeeswary & Lam, Man Kee & Uemura, Yoshimitsu & Lim, Jun Wei & Lee, Keat Teong & Shuit, Siew Hoong, 2019. "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Li, Shuangxi & Hu, Tianyi & Xu, Yanzhe & Wang, Jingyi & Chu, Ruoyu & Yin, Zhihong & Mo, Fan & Zhu, Liandong, 2020. "A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    19. Yani Aranguren Díaz & Edy Monterroza Martínez & Laura Carillo García & María C. Serrano & Elwi Machado Sierra, 2022. "Phycoremediation as a Strategy for the Recovery of Marsh and Wetland with Potential in Colombia," Resources, MDPI, vol. 11(2), pages 1-20, January.
    20. Bibi, Riaz & Ahmad, Zulfiqar & Imran, Muhammad & Hussain, Sabir & Ditta, Allah & Mahmood, Shahid & Khalid, Azeem, 2017. "Algal bioethanol production technology: A trend towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 976-985.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:146:y:2021:i:c:s136403212100469x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.