IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41219-4.html
   My bibliography  Save this article

North African humid periods over the past 800,000 years

Author

Listed:
  • Edward Armstrong

    (University of Helsinki)

  • Miikka Tallavaara

    (University of Helsinki)

  • Peter O. Hopcroft

    (University of Birmingham)

  • Paul J. Valdes

    (University of Bristol
    University of Bristol)

Abstract

The Sahara region has experienced periodic wet periods over the Quaternary and beyond. These North African Humid Periods (NAHPs) are astronomically paced by precession which controls the intensity of the African monsoon system. However, most climate models cannot reconcile the magnitude of these events and so the driving mechanisms remain poorly constrained. Here, we utilise a recently developed version of the HadCM3B coupled climate model that simulates 20 NAHPs over the past 800 kyr which have good agreement with NAHPs identified in proxy data. Our results show that precession determines NAHP pacing, but we identify that their amplitude is strongly linked to eccentricity via its control over ice sheet extent. During glacial periods, enhanced ice-albedo driven cooling suppresses NAHP amplitude at precession minima, when humid conditions would otherwise be expected. This highlights the importance of both precession and eccentricity, and the role of high latitude processes in determining the timing and amplitude of the NAHPs. This may have implications for the out of Africa dispersal of plants and animals throughout the Quaternary.

Suggested Citation

  • Edward Armstrong & Miikka Tallavaara & Peter O. Hopcroft & Paul J. Valdes, 2023. "North African humid periods over the past 800,000 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41219-4
    DOI: 10.1038/s41467-023-41219-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41219-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41219-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michela Biasutti, 2019. "Rainfall trends in the African Sahel: Characteristics, processes, and causes," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 10(4), July.
    2. Laetitia Loulergue & Adrian Schilt & Renato Spahni & Valérie Masson-Delmotte & Thomas Blunier & Bénédicte Lemieux & Jean-Marc Barnola & Dominique Raynaud & Thomas F. Stocker & Jérôme Chappellaz, 2008. "Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years," Nature, Nature, vol. 453(7193), pages 383-386, May.
    3. B. de Boer & Lucas J. Lourens & Roderik S.W. van de Wal, 2014. "Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    4. S. P. Harrison & P. J. Bartlein & K. Izumi & G. Li & J. Annan & J. Hargreaves & P. Braconnot & M. Kageyama, 2015. "Evaluation of CMIP5 palaeo-simulations to improve climate projections," Nature Climate Change, Nature, vol. 5(8), pages 735-743, August.
    5. Pascale Braconnot & Sandy P. Harrison & Masa Kageyama & Patrick J. Bartlein & Valerie Masson-Delmotte & Ayako Abe-Ouchi & Bette Otto-Bliesner & Yan Zhao, 2012. "Evaluation of climate models using palaeoclimatic data," Nature Climate Change, Nature, vol. 2(6), pages 417-424, June.
    6. Xinyu Wen & Zhengyu Liu & Shaowu Wang & Jun Cheng & Jiang Zhu, 2016. "Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph C. Raible & Joaquim G. Pinto & Patrick Ludwig & Martina Messmer, 2021. "A review of past changes in extratropical cyclones in the northern hemisphere and what can be learned for the future," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    2. Antoine Leblois, 2021. "Mitigating the impact of bad rainy seasons in poor agricultural regions to tackle deforestation," Post-Print hal-03111007, HAL.
    3. F. Held & H. Cheng & R. L. Edwards & O. Tüysüz & K. Koç & D. Fleitmann, 2024. "Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Yajie Dong & Naiqin Wu & Fengjiang Li & Dan Zhang & Yueting Zhang & Caiming Shen & Houyuan Lu, 2022. "The Holocene temperature conundrum answered by mollusk records from East Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Thanh Le & Deg-Hyo Bae, 2013. "Evaluating the Utility of IPCC AR4 GCMs for Hydrological Application in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3227-3246, July.
    6. Gillian Brown & Peter Richerson, 2014. "Applying evolutionary theory to human behaviour: past differences and current debates," Journal of Bioeconomics, Springer, vol. 16(2), pages 105-128, July.
    7. Stewart S. R. Jamieson & Neil Ross & Guy J. G. Paxman & Fiona J. Clubb & Duncan A. Young & Shuai Yan & Jamin Greenbaum & Donald D. Blankenship & Martin J. Siegert, 2023. "An ancient river landscape preserved beneath the East Antarctic Ice Sheet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    9. Traore, Seydou & Zhang, Lei & Guven, Aytac & Fipps, Guy, 2020. "Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Mohammed Achite & Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Tommaso Caloiero, 2021. "The Innovative Polygon Trend Analysis (IPTA) as a Simple Qualitative Method to Detect Changes in Environment—Example Detecting Trends of the Total Monthly Precipitation in Semiarid Area," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    11. Ran Feng & Tripti Bhattacharya & Bette L. Otto-Bliesner & Esther C. Brady & Alan M. Haywood & Julia C. Tindall & Stephen J. Hunter & Ayako Abe-Ouchi & Wing-Le Chan & Masa Kageyama & Camille Contoux & , 2022. "Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Aissatou Ndiaye & Mounkaila Saley Moussa & Cheikh Dione & Windmanagda Sawadogo & Jan Bliefernicht & Laouali Dungall & Harald Kunstmann, 2022. "Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations," Energies, MDPI, vol. 15(24), pages 1-22, December.
    13. Abbasi, Tasneem & Tauseef, S.M. & Abbasi, S.A., 2012. "Anaerobic digestion for global warming control and energy generation—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3228-3242.
    14. Ponnambalam Rameshwaran & Victoria A. Bell & Helen N. Davies & Alison L. Kay, 2021. "How might climate change affect river flows across West Africa?," Climatic Change, Springer, vol. 169(3), pages 1-27, December.
    15. Wenchao Zhang & Haibin Wu & Jun Cheng & Junyan Geng & Qin Li & Yong Sun & Yanyan Yu & Huayu Lu & Zhengtang Guo, 2022. "Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Andreas Koutsodendris & Vasilis Dakos & William J. Fletcher & Maria Knipping & Ulrich Kotthoff & Alice M. Milner & Ulrich C. Müller & Stefanie Kaboth-Bahr & Oliver A. Kern & Laurin Kolb & Polina Vakhr, 2023. "Atmospheric CO2 forcing on Mediterranean biomes during the past 500 kyrs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Holli Capps Herron & Peter Waylen & Kwadwo Owusu, 2023. "Spatial and temporal variability in the characteristics of extreme daily rainfalls in Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 655-680, May.
    18. Carolyn W. Snyder, 2019. "Revised estimates of paleoclimate sensitivity over the past 800,000 years," Climatic Change, Springer, vol. 156(1), pages 121-138, September.
    19. Chengfei He & Zhengyu Liu & Bette L. Otto-Bliesner & Esther C. Brady & Chenyu Zhu & Robert Tomas & Sifan Gu & Jing Han & Yishuai Jin, 2021. "Deglacial variability of South China hydroclimate heavily contributed by autumn rainfall," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Lori Bruhwiler & Sourish Basu & James H. Butler & Abhishek Chatterjee & Ed Dlugokencky & Melissa A. Kenney & Allison McComiskey & Stephen A. Montzka & Diane Stanitski, 2021. "Observations of greenhouse gases as climate indicators," Climatic Change, Springer, vol. 165(1), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41219-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.