IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40675-2.html
   My bibliography  Save this article

Molecular rearrangement of bicyclic peroxy radicals is a key route to aerosol from aromatics

Author

Listed:
  • Siddharth Iyer

    (Tampere University)

  • Avinash Kumar

    (Tampere University)

  • Anni Savolainen

    (Tampere University)

  • Shawon Barua

    (Tampere University)

  • Christopher Daub

    (University of Helsinki)

  • Lukas Pichelstorfer

    (Pi-Numerics)

  • Pontus Roldin

    (Lund University
    Swedish Environmental Research Institute IVL)

  • Olga Garmash

    (Tampere University
    University of Washington)

  • Prasenjit Seal

    (Tampere University)

  • Theo Kurtén

    (University of Helsinki)

  • Matti Rissanen

    (Tampere University
    University of Helsinki)

Abstract

The oxidation of aromatics contributes significantly to the formation of atmospheric aerosol. Using toluene as an example, we demonstrate the existence of a molecular rearrangement channel in the oxidation mechanism. Based on both flow reactor experiments and quantum chemical calculations, we show that the bicyclic peroxy radicals (BPRs) formed in OH-initiated aromatic oxidation are much less stable than previously thought, and in the case of the toluene derived ipso-BPRs, lead to aerosol-forming low-volatility products with up to 9 oxygen atoms on sub-second timescales. Similar results are predicted for ipso-BPRs formed from many other aromatic compounds. This reaction class is likely a key route for atmospheric aerosol formation, and including the molecular rearrangement of BPRs may be vital for accurate chemical modeling of the atmosphere.

Suggested Citation

  • Siddharth Iyer & Avinash Kumar & Anni Savolainen & Shawon Barua & Christopher Daub & Lukas Pichelstorfer & Pontus Roldin & Olga Garmash & Prasenjit Seal & Theo Kurtén & Matti Rissanen, 2023. "Molecular rearrangement of bicyclic peroxy radicals is a key route to aerosol from aromatics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40675-2
    DOI: 10.1038/s41467-023-40675-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40675-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40675-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Siddharth Iyer & Matti P. Rissanen & Rashid Valiev & Shawon Barua & Jordan E. Krechmer & Joel Thornton & Mikael Ehn & Theo Kurtén, 2021. "Molecular mechanism for rapid autoxidation in α-pinene ozonolysis," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    2. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinping Yang & Haichao Wang & Keding Lu & Xuefei Ma & Zhaofeng Tan & Bo Long & Xiaorui Chen & Chunmeng Li & Tianyu Zhai & Yang Li & Kun Qu & Yu Xia & Yuqiong Zhang & Xin Li & Shiyi Chen & Huabin Dong , 2024. "Reactive aldehyde chemistry explains the missing source of hydroxyl radicals," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    2. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    3. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    4. Wei Nie & Chao Yan & Liwen Yang & Pontus Roldin & Yuliang Liu & Alexander L. Vogel & Ugo Molteni & Dominik Stolzenburg & Henning Finkenzeller & Antonio Amorim & Federico Bianchi & Joachim Curtius & Lu, 2023. "NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    6. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    7. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    8. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
    9. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.
    10. Ling-Yun He & Xiao-Feng Qi, 2021. "Environmental Courts, Environment and Employment: Evidence from China," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    11. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    12. Weicong Fu & Qunyue Liu & Cecil Konijnendijk van den Bosch & Ziru Chen & Zhipeng Zhu & Jinda Qi & Mo Wang & Emily Dang & Jianwen Dong, 2018. "Long-Term Atmospheric Visibility Trends and Their Relations to Socioeconomic Factors in Xiamen City, China," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    13. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    14. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    15. Wei Xue & Qingming Zhan & Qi Zhang & Zhonghua Wu, 2019. "Spatiotemporal Variations of Particulate and Gaseous Pollutants and Their Relations to Meteorological Parameters: The Case of Xiangyang, China," IJERPH, MDPI, vol. 17(1), pages 1-23, December.
    16. Ying Su & Chunyan Lu & Xiaoqing Lin & Lianxiu Zhong & Yibin Gao & Yifan Lei, 2020. "Analysis of Spatio-temporal Characteristics and Driving Forces of Air Quality in the Northern Coastal Comprehensive Economic Zone, China," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    17. Yang, Aoxi & Wang, Yahui, 2023. "Transition of household cooking energy in China since the 1980s," Energy, Elsevier, vol. 270(C).
    18. Damm, Yannic Rudá & Börner, Jan & Gerber, Nicolas, 2021. "Health Effects of the Amazon Soy Moratorium," 2021 Conference, August 17-31, 2021, Virtual 315401, International Association of Agricultural Economists.
    19. Shih Ying Chang & William Vizuete & Marc Serre & Lakshmi Pradeepa Vennam & Mohammad Omary & Vlad Isakov & Michael Breen & Saravanan Arunachalam, 2017. "Finely Resolved On‐Road PM2.5 and Estimated Premature Mortality in Central North Carolina," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2420-2434, December.
    20. James K. Hammitt & Peter Morfeld & Jouni T. Tuomisto & Thomas C. Erren, 2020. "Premature Deaths, Statistical Lives, and Years of Life Lost: Identification, Quantification, and Valuation of Mortality Risks," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 674-695, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40675-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.