IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33930-5.html
   My bibliography  Save this article

Emergence of changing Central-Pacific and Eastern-Pacific El Niño-Southern Oscillation in a warming climate

Author

Listed:
  • Tao Geng

    (Pilot National Laboratory for Marine Science and Technology (Qingdao)
    Ocean University of China)

  • Wenju Cai

    (Pilot National Laboratory for Marine Science and Technology (Qingdao)
    Ocean University of China
    CSIRO Oceans and Atmosphere)

  • Lixin Wu

    (Pilot National Laboratory for Marine Science and Technology (Qingdao)
    Ocean University of China)

  • Agus Santoso

    (CSIRO Oceans and Atmosphere
    University of New South Wales
    University of New South Wales)

  • Guojian Wang

    (Pilot National Laboratory for Marine Science and Technology (Qingdao)
    Ocean University of China
    CSIRO Oceans and Atmosphere)

  • Zhao Jing

    (Pilot National Laboratory for Marine Science and Technology (Qingdao)
    Ocean University of China)

  • Bolan Gan

    (Pilot National Laboratory for Marine Science and Technology (Qingdao)
    Ocean University of China)

  • Yun Yang

    (Beijing Normal University)

  • Shujun Li

    (Pilot National Laboratory for Marine Science and Technology (Qingdao)
    Ocean University of China)

  • Shengpeng Wang

    (Pilot National Laboratory for Marine Science and Technology (Qingdao)
    Ocean University of China)

  • Zhaohui Chen

    (Pilot National Laboratory for Marine Science and Technology (Qingdao)
    Ocean University of China)

  • Michael J. McPhaden

    (NOAA/Pacific Marine Environmental Laboratory)

Abstract

El Niño-Southern Oscillation (ENSO) features strong warm events in the eastern equatorial Pacific (EP), or mild warm and strong cold events in the central Pacific (CP), with distinct impacts on global climates. Under transient greenhouse warming, models project increased sea surface temperature (SST) variability of both ENSO regimes, but the timing of emergence out of internal variability remains unknown for either regime. Here we find increased EP-ENSO SST variability emerging by around 2030 ± 6, more than a decade earlier than that of CP-ENSO, and approximately four decades earlier than that previously suggested without separating the two regimes. The earlier EP-ENSO emergence results from a stronger increase in EP-ENSO rainfall response, which boosts the signal of increased SST variability, and is enhanced by ENSO non-linear atmospheric feedback. Thus, increased ENSO SST variability under greenhouse warming is likely to emerge first in the eastern than central Pacific, and decades earlier than previously anticipated.

Suggested Citation

  • Tao Geng & Wenju Cai & Lixin Wu & Agus Santoso & Guojian Wang & Zhao Jing & Bolan Gan & Yun Yang & Shujun Li & Shengpeng Wang & Zhaohui Chen & Michael J. McPhaden, 2022. "Emergence of changing Central-Pacific and Eastern-Pacific El Niño-Southern Oscillation in a warming climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33930-5
    DOI: 10.1038/s41467-022-33930-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33930-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33930-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kewei Lyu & Xuebin Zhang & John A. Church & Aimée B. A. Slangen & Jianyu Hu, 2014. "Time of emergence for regional sea-level change," Nature Climate Change, Nature, vol. 4(11), pages 1006-1010, November.
    2. Austin P.C. & Tu J.V., 2004. "Bootstrap Methods for Developing Predictive Models," The American Statistician, American Statistical Association, vol. 58, pages 131-137, May.
    3. Camilo Mora & Abby G. Frazier & Ryan J. Longman & Rachel S. Dacks & Maya M. Walton & Eric J. Tong & Joseph J. Sanchez & Lauren R. Kaiser & Yuko O. Stender & James M. Anderson & Christine M. Ambrosino , 2013. "The projected timing of climate departure from recent variability," Nature, Nature, vol. 502(7470), pages 183-187, October.
    4. Wenju Cai & Agus Santoso & Guojian Wang & Evan Weller & Lixin Wu & Karumuri Ashok & Yukio Masumoto & Toshio Yamagata, 2014. "Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming," Nature, Nature, vol. 510(7504), pages 254-258, June.
    5. Wenju Cai & Simon Borlace & Matthieu Lengaigne & Peter van Rensch & Mat Collins & Gabriel Vecchi & Axel Timmermann & Agus Santoso & Michael J. McPhaden & Lixin Wu & Matthew H. England & Guojian Wang &, 2014. "Increasing frequency of extreme El Niño events due to greenhouse warming," Nature Climate Change, Nature, vol. 4(2), pages 111-116, February.
    6. Masahiro Watanabe & Jean-Louis Dufresne & Yu Kosaka & Thorsten Mauritsen & Hiroaki Tatebe, 2021. "Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient," Nature Climate Change, Nature, vol. 11(1), pages 33-37, January.
    7. Wenju Cai & Benjamin Ng & Guojian Wang & Agus Santoso & Lixin Wu & Kai Yang, 2022. "Increased ENSO sea surface temperature variability under four IPCC emission scenarios," Nature Climate Change, Nature, vol. 12(3), pages 228-231, March.
    8. Ulla K. Heede & Alexey V. Fedorov, 2021. "Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase," Nature Climate Change, Nature, vol. 11(8), pages 696-703, August.
    9. Wenju Cai & Agus Santoso & Guojian Wang & Sang-Wook Yeh & Soon-Il An & Kim M. Cobb & Mat Collins & Eric Guilyardi & Fei-Fei Jin & Jong-Seong Kug & Matthieu Lengaigne & Michael J. McPhaden & Ken Takaha, 2015. "ENSO and greenhouse warming," Nature Climate Change, Nature, vol. 5(9), pages 849-859, September.
    10. Seon Tae Kim & Wenju Cai & Fei-Fei Jin & Agus Santoso & Lixin Wu & Eric Guilyardi & Soon-Il An, 2014. "Response of El Niño sea surface temperature variability to greenhouse warming," Nature Climate Change, Nature, vol. 4(9), pages 786-790, September.
    11. Jun Ying & Matthew Collins & Wenju Cai & Axel Timmermann & Ping Huang & Dake Chen & Karl Stein, 2022. "Emergence of climate change in the tropical Pacific," Nature Climate Change, Nature, vol. 12(4), pages 356-364, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosmay Lopez & Sang-Ki Lee & Dongmin Kim & Andrew T. Wittenberg & Sang-Wook Yeh, 2022. "Projections of faster onset and slower decay of El Niño in the 21st century," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Aguilar, Arturo & Vicarelli, Marta, 2022. "El Niño and children: Medium-term effects of early-life weather shocks on cognitive and health outcomes," World Development, Elsevier, vol. 150(C).
    3. Omid Alizadeh, 2022. "Amplitude, duration, variability, and seasonal frequency analysis of the El Niño-Southern Oscillation," Climatic Change, Springer, vol. 174(3), pages 1-15, October.
    4. Savin Chand & Scott Power & Kevin Walsh & Neil Holbrook & Kathleen McInnes & Kevin Tory & Hamish Ramsay & Ron Hoeke & Anthony S. Kiem, 2023. "Climate processes and drivers in the Pacific and global warming: a review for informing Pacific planning agencies," Climatic Change, Springer, vol. 176(2), pages 1-16, February.
    5. Johann D. Bell & Inna Senina & Timothy Adams & Olivier Aumont & Beatriz Calmettes & Sangaalofa Clark & Morgane Dessert & Marion Gehlen & Thomas Gorgues & John Hampton & Quentin Hanich & Harriet Harden, 2021. "Pathways to sustaining tuna-dependent Pacific Island economies during climate change," Nature Sustainability, Nature, vol. 4(10), pages 900-910, October.
    6. Joshua B. Horton & Penehuro Lefale & David Keith, 2021. "Parametric Insurance for Solar Geoengineering: Insights from the Pacific Catastrophe Risk Assessment and Financing Initiative," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 97-107, April.
    7. Michele Ronco & José María Tárraga & Jordi Muñoz & María Piles & Eva Sevillano Marco & Qiang Wang & Maria Teresa Miranda Espinosa & Sylvain Ponserre & Gustau Camps-Valls, 2023. "Exploring interactions between socioeconomic context and natural hazards on human population displacement," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Davis, Katrina J, 2022. "Managed culls mean extinction for a marine mammal population when combined with extreme climate impacts," Ecological Modelling, Elsevier, vol. 473(C).
    9. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Abdul Rehman & Hengyun Ma & Magdalena Radulescu & Crenguta Ileana Sinisi & Zahid Yousaf, 2021. "Energy Crisis in Pakistan and Economic Progress: Decoupling the Impact of Coal Energy Consumption in Power and Brick Kilns," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
    11. Neethu C & K V Ramesh, 2023. "Projected changes in heat wave characteristics over India," Climatic Change, Springer, vol. 176(10), pages 1-26, October.
    12. Ruiqiang Ding & Yu‐Heng Tseng & Emanuele Lorenzo & Liang Shi & Jianping Li & Jin-Yi Yu & Chunzai Wang & Cheng Sun & Jing-Jia Luo & Kyung‑Ja Ha & Zeng-Zhen Hu & Feifei Li, 2022. "Multi-year El Niño events tied to the North Pacific Oscillation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Ryan Cronin & Anthony Halog, 2022. "A Unique Perspective of Materials, Practices and Structures Within the Food, Energy and Water Nexus of Australian Urban Alternative Food Networks," Circular Economy and Sustainability,, Springer.
    14. Cecilia M. V. B. Almeida & Biagio F. Giannetti & Feni Agostinho & Gengyuan Liu & Zhifeng Yang, 2021. "What Are the Stimuli to Change to a Sustainable Post-COVID-19 Society?," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    15. Hussain, Moon Moon & Pal, Shreya & Villanthenkodath, Muhammed Ashiq, 2023. "Towards sustainable development: The impact of transport infrastructure expenditure on the ecological footprint in India," Innovation and Green Development, Elsevier, vol. 2(2).
    16. Frances C. Moore, 2017. "Learning, Adaptation, And Weather In A Changing Climate," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-21, November.
    17. Zhang, Xiaogang & Ranjith, P.G. & Ranathunga, A.S., 2019. "Sub- and super-critical carbon dioxide flow variations in large high-rank coal specimen: An experimental study," Energy, Elsevier, vol. 181(C), pages 148-161.
    18. Rémi Generoso & Cécile Couharde & Olivier Damette & Kamiar Mohaddes, 2020. "The Growth Effects of El Niño and La Niña: Local Weather Conditions Matter," Annals of Economics and Statistics, GENES, issue 140, pages 83-126.
    19. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    20. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33930-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.