IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33435-1.html
   My bibliography  Save this article

Bias-free solar hydrogen production at 19.8 mA cm−2 using perovskite photocathode and lignocellulosic biomass

Author

Listed:
  • Yuri Choi

    (Ulsan National Institute of Science and Technology (UNIST)
    School of Energy and Chemical Engineering, UNIST)

  • Rashmi Mehrotra

    (Ulsan National Institute of Science and Technology (UNIST)
    School of Energy and Chemical Engineering, UNIST)

  • Sang-Hak Lee

    (Ulsan National Institute of Science and Technology (UNIST)
    School of Energy and Chemical Engineering, UNIST)

  • Trang Vu Thien Nguyen

    (School of Energy and Chemical Engineering, UNIST)

  • Inhui Lee

    (Ulsan National Institute of Science and Technology (UNIST)
    School of Energy and Chemical Engineering, UNIST)

  • Jiyeong Kim

    (Ulsan National Institute of Science and Technology (UNIST)
    School of Energy and Chemical Engineering, UNIST)

  • Hwa-Young Yang

    (Ulsan National Institute of Science and Technology (UNIST)
    School of Energy and Chemical Engineering, UNIST)

  • Hyeonmyeong Oh

    (Ulsan National Institute of Science and Technology (UNIST)
    School of Energy and Chemical Engineering, UNIST)

  • Hyunwoo Kim

    (Ulsan National Institute of Science and Technology (UNIST)
    School of Energy and Chemical Engineering, UNIST)

  • Jae-Won Lee

    (Chonnam National University
    Chonnam National University)

  • Yong Hwan Kim

    (School of Energy and Chemical Engineering, UNIST
    Graduate School of Carbon Neutrality, UNIST)

  • Sung-Yeon Jang

    (Ulsan National Institute of Science and Technology (UNIST)
    School of Energy and Chemical Engineering, UNIST
    Graduate School of Carbon Neutrality, UNIST)

  • Ji-Wook Jang

    (Ulsan National Institute of Science and Technology (UNIST)
    School of Energy and Chemical Engineering, UNIST
    Graduate School of Carbon Neutrality, UNIST
    Emergent Hydrogen Technology R&D Center, UNIST)

  • Jungki Ryu

    (Ulsan National Institute of Science and Technology (UNIST)
    School of Energy and Chemical Engineering, UNIST
    Graduate School of Carbon Neutrality, UNIST
    Emergent Hydrogen Technology R&D Center, UNIST)

Abstract

Solar hydrogen production is one of the ultimate technologies needed to realize a carbon-neutral, sustainable society. However, an energy-intensive water oxidation half-reaction together with the poor performance of conventional inorganic photocatalysts have been big hurdles for practical solar hydrogen production. Here we present a photoelectrochemical cell with a record high photocurrent density of 19.8 mA cm−2 for hydrogen production by utilizing a high-performance organic–inorganic halide perovskite as a panchromatic absorber and lignocellulosic biomass as an alternative source of electrons working at lower potentials. In addition, value-added chemicals such as vanillin and acetovanillone are produced via the selective depolymerization of lignin in lignocellulosic biomass while cellulose remains close to intact for further utilization. This study paves the way to improve solar hydrogen productivity and simultaneously realize the effective use of lignocellulosic biomass.

Suggested Citation

  • Yuri Choi & Rashmi Mehrotra & Sang-Hak Lee & Trang Vu Thien Nguyen & Inhui Lee & Jiyeong Kim & Hwa-Young Yang & Hyeonmyeong Oh & Hyunwoo Kim & Jae-Won Lee & Yong Hwan Kim & Sung-Yeon Jang & Ji-Wook Ja, 2022. "Bias-free solar hydrogen production at 19.8 mA cm−2 using perovskite photocathode and lignocellulosic biomass," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33435-1
    DOI: 10.1038/s41467-022-33435-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33435-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33435-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. X. Chen & A. Lavacchi & H. A. Miller & M. Bevilacqua & J. Filippi & M. Innocenti & A. Marchionni & W. Oberhauser & L. Wang & F. Vizza, 2014. "Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
    2. Wei Liu & Wei Mu & Mengjie Liu & Xiaodan Zhang & Hongli Cai & Yulin Deng, 2014. "Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    3. Mark V. Khenkin & Eugene A. Katz & Antonio Abate & Giorgio Bardizza & Joseph J. Berry & Christoph Brabec & Francesca Brunetti & Vladimir Bulović & Quinn Burlingame & Aldo Di Carlo & Rongrong Cheacharo, 2020. "Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures," Nature Energy, Nature, vol. 5(1), pages 35-49, January.
    4. Jin Hyun Kim & Ji-Wook Jang & Yim Hyun Jo & Fatwa F. Abdi & Young Hye Lee & Roel van de Krol & Jae Sung Lee, 2016. "Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suk Min Kim & Sung Heuck Kang & Jinhee Lee & Yoonyoung Heo & Eleni G. Poloniataki & Jingu Kang & Hye-Jin Yoon & So Yeon Kong & Yaejin Yun & Hyunwoo Kim & Jungki Ryu & Hyung Ho Lee & Yong Hwan Kim, 2024. "Identifying a key spot for electron mediator-interaction to tailor CO dehydrogenase’s affinity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    2. Hamish Andrew Miller & Jacopo Ruggeri & Andrea Marchionni & Marco Bellini & Maria Vincenza Pagliaro & Carlo Bartoli & Andrea Pucci & Elisa Passaglia & Francesco Vizza, 2018. "Improving the Energy Efficiency of Direct Formate Fuel Cells with a Pd/C-CeO 2 Anode Catalyst and Anion Exchange Ionomer in the Catalyst Layer," Energies, MDPI, vol. 11(2), pages 1-12, February.
    3. Ganceng Yang & Yanqing Jiao & Haijing Yan & Ying Xie & Chungui Tian & Aiping Wu & Yu Wang & Honggang Fu, 2022. "Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Austin M. K. Fehr & Ayush Agrawal & Faiz Mandani & Christian L. Conrad & Qi Jiang & So Yeon Park & Olivia Alley & Bor Li & Siraj Sidhik & Isaac Metcalf & Christopher Botello & James L. Young & Jacky E, 2023. "Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Tayebi, Meysam & Lee, Byeong-Kyu, 2019. "Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 332-343.
    7. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Michael Saliba & Eva Unger & Lioz Etgar & Jingshan Luo & T. Jesper Jacobsson, 2023. "A systematic discrepancy between the short circuit current and the integrated quantum efficiency in perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    9. Zhou, Wei & Chen, Shuai & Meng, Xiaoxiao & Li, Jiayi & Huang, Yuming & Gao, Jihui & Zhao, Guangbo & He, Yong & Qin, Yukun, 2022. "Two-step coal-assisted water electrolysis for energy-saving hydrogen production at cell voltage of 1.2 V with current densities larger than 150 mA/cm2," Energy, Elsevier, vol. 260(C).
    10. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Safat Dipta, Shahriyar & Schoenlaub, Jean & Habibur Rahaman, Md & Uddin, Ashraf, 2022. "Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses," Applied Energy, Elsevier, vol. 328(C).
    13. Zhuang Zhang & Huanhuan Wang & T. Jesper Jacobsson & Jingshan Luo, 2022. "Big data driven perovskite solar cell stability analysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    15. Maria G. Savvidou & Pavlos K. Pandis & Diomi Mamma & Georgia Sourkouni & Christos Argirusis, 2022. "Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review," Energies, MDPI, vol. 15(15), pages 1-53, August.
    16. Quayson, Emmanuel & Amoah, Jerome & Hama, Shinji & Kondo, Akihiko & Ogino, Chiaki, 2020. "Immobilized lipases for biodiesel production: Current and future greening opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Saraswat, Sushil Kumar & Rodene, Dylan D. & Gupta, Ram B., 2018. "Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 228-248.
    18. Sara Pescetelli & Antonio Agresti & George Viskadouros & Stefano Razza & Konstantinos Rogdakis & Ioannis Kalogerakis & Emmanuel Spiliarotis & Enrico Leonardi & Paolo Mariani & Luca Sorbello & Marco Pi, 2022. "Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm," Nature Energy, Nature, vol. 7(7), pages 597-607, July.
    19. Xinlong Wang & Zhiqin Ying & Jingming Zheng & Xin Li & Zhipeng Zhang & Chuanxiao Xiao & Ying Chen & Ming Wu & Zhenhai Yang & Jingsong Sun & Jia-Ru Xu & Jiang Sheng & Yuheng Zeng & Xi Yang & Guichuan X, 2023. "Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Tong Liu, 2022. "Glucose Fuel Cells and Membranes: A Brief Overview and Literature Analysis," Sustainability, MDPI, vol. 14(14), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33435-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.