IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v138y2021ics1364032120307899.html
   My bibliography  Save this article

Recent progress in material selection and device designs for photoelectrochemical water-splitting

Author

Listed:
  • Hamdani, I.R.
  • Bhaskarwar, A.N.

Abstract

The development of renewable and sustainable energy sources along with efficient storing strategies has been the focus of utmost importance within the community to address the current energy crisis and rising energy demands. In this respect, solar hydrogen production through the route of photoelectrochemical (PEC) water-splitting is considered as a highly promising option. This review begins with a focus on understanding the PEC fundamentals in terms of the charge-transfer processes and energy requirements followed by the prerequisite properties of photoelectrode materials. We then highlighted the recent progress in different semiconductor materials and PEC device configurations. Various photoelectrode materials and device designs were classified based on their performances, with the realization of their advantages and limitations. Recent investigations in theoretical studies carried out in this field were summarised to understand the knowledge-gap and futuristic requirements. Challenges responsible for the limited efficiencies of the existing PEC water-splitting technology, considering both the material development and PEC device designs, have been discussed. Accordingly, certain possible strategies and solutions were recommended with an aim to make the PEC water-splitting a practically feasible technology.

Suggested Citation

  • Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120307899
    DOI: 10.1016/j.rser.2020.110503
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120307899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fatwa F. Abdi & Lihao Han & Arno H. M. Smets & Miro Zeman & Bernard Dam & Roel van de Krol, 2013. "Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    2. Linfeng Pan & Yuhang Liu & Liang Yao & Ren & Kevin Sivula & Michael Grätzel & Anders Hagfeldt, 2020. "Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Kostiantyn V. Kravchyk & Preeti Bhauriyal & Laura Piveteau & Christoph P. Guntlin & Biswarup Pathak & Maksym V. Kovalenko, 2018. "High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Carlos G. Morales-Guio & S. David Tilley & Heron Vrubel & Michael Grätzel & Xile Hu, 2014. "Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    5. Kai-Hang Ye & Haibo Li & Duan Huang & Shuang Xiao & Weitao Qiu & Mingyang Li & Yuwen Hu & Wenjie Mai & Hongbing Ji & Shihe Yang, 2019. "Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Bugra Turan & Jan-Philipp Becker & Félix Urbain & Friedhelm Finger & Uwe Rau & Stefan Haas, 2016. "Upscaling of integrated photoelectrochemical water-splitting devices to large areas," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    7. Hui-Chun Fu & Purushothaman Varadhan & Chun-Ho Lin & Jr-Hau He, 2020. "Spontaneous solar water splitting with decoupling of light absorption and electrocatalysis using silicon back-buried junction," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    8. Wooseok Yang & Jin Hyun Kim & Oliver S. Hutter & Laurie J. Phillips & Jeiwan Tan & Jaemin Park & Hyungsoo Lee & Jonathan D. Major & Jae Sung Lee & Jooho Moon, 2020. "Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    9. Ji-Wook Jang & Chun Du & Yifan Ye & Yongjing Lin & Xiahui Yao & James Thorne & Erik Liu & Gregory McMahon & Junfa Zhu & Ali Javey & Jinghua Guo & Dunwei Wang, 2015. "Enabling unassisted solar water splitting by iron oxide and silicon," Nature Communications, Nature, vol. 6(1), pages 1-5, November.
    10. Xinjian Shi & Hokyeong Jeong & Seung Jae Oh & Ming Ma & Kan Zhang & Jeong Kwon & In Taek Choi & Il Yong Choi & Hwan Kyu Kim & Jong Kyu Kim & Jong Hyeok Park, 2016. "Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
    11. Haimei Wang & Yuguo Xia & Haiping Li & Xiang Wang & Yuan Yu & Xiuling Jiao & Dairong Chen, 2020. "Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    12. Dong Ki Lee & Kyoung-Shin Choi, 2018. "Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition," Nature Energy, Nature, vol. 3(1), pages 53-60, January.
    13. Jin Hyun Kim & Ji-Wook Jang & Yim Hyun Jo & Fatwa F. Abdi & Young Hye Lee & Roel van de Krol & Jae Sung Lee, 2016. "Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    14. Jieyang Jia & Linsey C. Seitz & Jesse D. Benck & Yijie Huo & Yusi Chen & Jia Wei Desmond Ng & Taner Bilir & James S. Harris & Thomas F. Jaramillo, 2016. "Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    15. Zunain Ayaz, RanaMuhammad & Akyüz, Duygu & Uğuz, Özlem & Tanşık, İrem & Sarıoğlu, Cevat & Karaca, Fatma & Özkaya, Ali Rıza & Koca, Atıf, 2020. "Photoelectrochemical performance of thermally sulfurized CdxZn1-xS photoanode: Enhancement with reduced graphene oxide support," Renewable Energy, Elsevier, vol. 162(C), pages 182-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saraswat, Sushil Kumar & Rodene, Dylan D. & Gupta, Ram B., 2018. "Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 228-248.
    2. Tayebi, Meysam & Lee, Byeong-Kyu, 2019. "Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 332-343.
    3. Stephanie J. Boyd & Run Long & Niall J. English, 2022. "Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook," Energies, MDPI, vol. 15(4), pages 1-16, February.
    4. Simon Caron & Marc Röger & Michael Wullenkord, 2020. "Selection of Solar Concentrator Design Concepts for Planar Photoelectrochemical Water Splitting Devices," Energies, MDPI, vol. 13(19), pages 1-31, October.
    5. Dhandole, Love Kumar & Anushkkaran, Periyasamy & Hwang, Jun Beom & Chae, Weon-Sik & Kumar, Manish & Lee, Hyun-Hwi & Choi, Sun Hee & Jang, Jum Suk & Lee, Jae Sung, 2022. "Microwave-assisted metal-ion attachment for ex-situ zirconium doping into hematite for enhanced photoelectrochemical water splitting," Renewable Energy, Elsevier, vol. 189(C), pages 694-703.
    6. Sang Eon Jun & Youn-Hye Kim & Jaehyun Kim & Woo Seok Cheon & Sungkyun Choi & Jinwook Yang & Hoonkee Park & Hyungsoo Lee & Sun Hwa Park & Ki Chang Kwon & Jooho Moon & Soo-Hyun Kim & Ho Won Jang, 2023. "Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Lee, Jin Uk & Kim, Jeong Hun & Kang, Kyungwoong & Shin, Yun Seop & Kim, Jin Young & Kim, Jin Hyun & Lee, Jae Sung, 2023. "Bulk and surface modified polycrystalline CuWO4 films for photoelectrochemical water oxidation," Renewable Energy, Elsevier, vol. 203(C), pages 779-787.
    8. Beibei Zhang & Shiqiang Yu & Ying Dai & Xiaojuan Huang & Lingjun Chou & Gongxuan Lu & Guojun Dong & Yingpu Bi, 2021. "Nitrogen-incorporation activates NiFeOx catalysts for efficiently boosting oxygen evolution activity and stability of BiVO4 photoanodes," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Wan Jae Dong & Yixin Xiao & Ke R. Yang & Zhengwei Ye & Peng Zhou & Ishtiaque Ahmed Navid & Victor S. Batista & Zetian Mi, 2023. "Pt nanoclusters on GaN nanowires for solar-asssisted seawater hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Jinshui Cheng & Linxiao Wu & Jingshan Luo, 2023. "Improving the photovoltage of Cu2O photocathodes with dual buffer layers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Xue Zhou & Baihe Fu & Linjuan Li & Zheng Tian & Xiankui Xu & Zihao Wu & Jing Yang & Zhonghai Zhang, 2022. "Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Abderrahime Sekkat & Maciej Oskar Liedke & Viet Huong Nguyen & Maik Butterling & Federico Baiutti & Juan de Dios Sirvent Veru & Matthieu Weber & Laetitia Rapenne & Daniel Bellet & Guy Chichignoud & An, 2022. "Chemical deposition of Cu2O films with ultra-low resistivity: correlation with the defect landscape," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    14. Ganceng Yang & Yanqing Jiao & Haijing Yan & Ying Xie & Chungui Tian & Aiping Wu & Yu Wang & Honggang Fu, 2022. "Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Ma, Ben-Chi & Lin, Hua & Zhu, Yizhou & Zeng, Zilong & Geng, Jiafeng & Jing, Dengwei, 2022. "A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter," Renewable Energy, Elsevier, vol. 194(C), pages 1221-1232.
    16. Xinyi Zhang & Michael Schwarze & Reinhard Schomäcker & Roel Krol & Fatwa F. Abdi, 2023. "Life cycle net energy assessment of sustainable H2 production and hydrogenation of chemicals in a coupled photoelectrochemical device," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Austin M. K. Fehr & Ayush Agrawal & Faiz Mandani & Christian L. Conrad & Qi Jiang & So Yeon Park & Olivia Alley & Bor Li & Siraj Sidhik & Isaac Metcalf & Christopher Botello & James L. Young & Jacky E, 2023. "Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    19. Biswas, Neeraj Kumar & Srivastav, Anupam & Saxena, Sakshi & Verma, Anuradha & Dutta, Runjhun & Srivastava, Manju & Upadhyay, Sumant & Satsangi, Vibha Rani & Shrivastav, Rohit & Dass, Sahab, 2023. "Temperature of photoanode for photoelectrochemical water oxidation," Renewable Energy, Elsevier, vol. 208(C), pages 504-511.
    20. Changhao Liu & Ningsi Zhang & Yang Li & Rongli Fan & Wenjing Wang & Jianyong Feng & Chen Liu & Jiaou Wang & Weichang Hao & Zhaosheng Li & Zhigang Zou, 2023. "Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120307899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.