IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5196-d424053.html
   My bibliography  Save this article

Selection of Solar Concentrator Design Concepts for Planar Photoelectrochemical Water Splitting Devices

Author

Listed:
  • Simon Caron

    (German Aerospace Center (DLR), Institute of Solar Research, Paseo de Almería 73-2, 04001 Almería, Spain)

  • Marc Röger

    (German Aerospace Center (DLR), Institute of Solar Research, Paseo de Almería 73-2, 04001 Almería, Spain)

  • Michael Wullenkord

    (German Aerospace Center (DLR), Institute of Solar Research, Professor-Rehm-Strasse 1, 52428 Jülich, Germany)

Abstract

Photoelectrochemical water splitting is a promising pathway for solar-driven hydrogen production with a low environmental footprint. The utilization of solar concentrators to supply such water splitting devices with concentrated solar irradiation offers great potential to enhance the economic viability of water splitting at “sunny” site locations. In this work, we defined a set of functional requirements for solar concentrators to assess their suitability to power such water splitting devices, taking into account concentrator optical performance, device coupling efficiency, perceived system complexity, as well as technological costs and risks. We identified, classified and compared a broad range of existing solar concentrator design concepts. Our geometrical analysis, performed on a yearly basis with a one-minute time step, shows that two-axis tracking concentrators with water splitting devices positioned parallel to the optical aperture plane exhibit the highest potential, given the initial conditions applied for the device tilt constraints. Demanding an angle of at least 20° between horizontal and the front side of the water splitting device, allows the device to be operational for 97% of the daylight time in Seville, Spain. The relative loss with respect to the available direct normal irradiance is estimated to 6%. Results moderately depend on the location of application, but generally confirm that the consideration of tilt angle constraints is essential for a comprehensive performance assessment of photoelectrochemical water splitting driven by concentrated sunlight.

Suggested Citation

  • Simon Caron & Marc Röger & Michael Wullenkord, 2020. "Selection of Solar Concentrator Design Concepts for Planar Photoelectrochemical Water Splitting Devices," Energies, MDPI, vol. 13(19), pages 1-31, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5196-:d:424053
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fatwa F. Abdi & Lihao Han & Arno H. M. Smets & Miro Zeman & Bernard Dam & Roel van de Krol, 2013. "Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    2. Xie, W.T. & Dai, Y.J. & Wang, R.Z. & Sumathy, K., 2011. "Concentrated solar energy applications using Fresnel lenses: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2588-2606, August.
    3. Saurabh Tembhurne & Fredy Nandjou & Sophia Haussener, 2019. "A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation," Nature Energy, Nature, vol. 4(5), pages 399-407, May.
    4. Koumi Ngoh, Simon & Njomo, Donatien, 2012. "An overview of hydrogen gas production from solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6782-6792.
    5. Hulin Huang & Yuehong Su & Yibing Gao & Saffa Riffat, 2011. "Design analysis of a Fresnel lens concentrating PV cell," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(3), pages 165-170, January.
    6. Baig, Hasan & Heasman, Keith C. & Mallick, Tapas K., 2012. "Non-uniform illumination in concentrating solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5890-5909.
    7. Nijegorodov, N. & Jain, P.K. & Devan, K.R.S., 1995. "A non-tracking, cylindrical solar concentrator with circular cross-section: Theoretical and experimental analysis," Renewable Energy, Elsevier, vol. 6(1), pages 1-9.
    8. Bugra Turan & Jan-Philipp Becker & Félix Urbain & Friedhelm Finger & Uwe Rau & Stefan Haas, 2016. "Upscaling of integrated photoelectrochemical water-splitting devices to large areas," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Baig, Hasan & Heasman, Keith C. & Mallick, Tapas K., 2012. "Non-uniform illumination in concentrating solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5890-5909.
    3. Yassir A. Alamri & Saad Mahmoud & Raya Al-Dadah & Shivangi Sharma & J. N. Roy & Yulong Ding, 2021. "Optical Performance of Single Point-Focus Fresnel Lens Concentrator System for Multiple Multi-Junction Solar Cells—A Numerical Study," Energies, MDPI, vol. 14(14), pages 1-18, July.
    4. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    5. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    6. Saraswat, Sushil Kumar & Rodene, Dylan D. & Gupta, Ram B., 2018. "Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 228-248.
    7. Singhy, Arvind & Thakur, Robin & Kumar, Raj, 2021. "Experimental analysis for co-generation of heat and power with convex lens as SOE and linear Fresnel Lens as POE using active water stream," Renewable Energy, Elsevier, vol. 163(C), pages 740-754.
    8. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    9. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    10. Shanks, Katie & Senthilarasu, S. & Mallick, Tapas K., 2016. "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 394-407.
    11. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    12. Saura, José M. & Chemisana, Daniel & Rodrigo, Pedro M. & Almonacid, Florencia M. & Fernández, Eduardo F., 2022. "Effect of non-uniformity on concentrator multi-junction solar cells equipped with refractive secondary optics under shading conditions," Energy, Elsevier, vol. 238(PC).
    13. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Saim Memon & Khawaja Noman Tahir, 2018. "Experimental and Analytical Simulation Analyses on the Electrical Performance of Thermoelectric Generator Modules for Direct and Concentrated Quartz-Halogen Heat Harvesting," Energies, MDPI, vol. 11(12), pages 1-17, November.
    15. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    16. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    17. Baig, Hasan & Sarmah, Nabin & Chemisana, Daniel & Rosell, Joan & Mallick, Tapas K., 2014. "Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge," Energy, Elsevier, vol. 73(C), pages 177-191.
    18. Haneol Kim & Jongkyu Kim, 2021. "Numerical Study on Optics and Heat Transfer of Solar Reactor for Methane Thermal Decomposition," Energies, MDPI, vol. 14(20), pages 1-21, October.
    19. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    20. Tibúrcio, B.D. & Liang, D. & Almeida, J. & Garcia, D. & Catela, M. & Costa, H. & Vistas, C.R., 2022. "Tracking error compensation capacity measurement of a dual-rod side-pumping solar laser," Renewable Energy, Elsevier, vol. 195(C), pages 1253-1261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5196-:d:424053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.