IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp694-703.html
   My bibliography  Save this article

Microwave-assisted metal-ion attachment for ex-situ zirconium doping into hematite for enhanced photoelectrochemical water splitting

Author

Listed:
  • Dhandole, Love Kumar
  • Anushkkaran, Periyasamy
  • Hwang, Jun Beom
  • Chae, Weon-Sik
  • Kumar, Manish
  • Lee, Hyun-Hwi
  • Choi, Sun Hee
  • Jang, Jum Suk
  • Lee, Jae Sung

Abstract

Ex-situ doping into hematite films is carried out via a short-duration (∼60 s) microwave-assisted metal-ions attachment (MWMA) of tetravalent Zr4+ ion on the surface of FeOOH/FTO, followed by high temperature annealing (HTA) to fabricate Zr4+:Fe2O3/FTO photoanode for photoelectrochemical (PEC) water splitting. Compared to a simple dipping attachment without microwave irradiation, this MWMA allows a much larger amount of attached Zr4+-ions on the FeOOH precursor, leading to a properly doped photoanode of much higher PEC activity. The primary effect of Zr4+ doping is to improve the charge transport characteristics in the bulk of hematite. In addition, it also boosts charge injection efficiency at the semiconductor and electrolyte interface by forming an inadvertent passivation layer and promoting hole transfer via surface states. As a result, the Zr4+:Fe2O3/FTO photoanode shows a higher photocurrent density of 1.54 mA cm−2 at 1.23 VRHE under 1 Sun irradiation relative to undoped Fe2O3/FTO (1.02 mA cm−2) or Zr4+:Fe2O3/FTO (1.19 mA cm−2) prepared without MWMA.

Suggested Citation

  • Dhandole, Love Kumar & Anushkkaran, Periyasamy & Hwang, Jun Beom & Chae, Weon-Sik & Kumar, Manish & Lee, Hyun-Hwi & Choi, Sun Hee & Jang, Jum Suk & Lee, Jae Sung, 2022. "Microwave-assisted metal-ion attachment for ex-situ zirconium doping into hematite for enhanced photoelectrochemical water splitting," Renewable Energy, Elsevier, vol. 189(C), pages 694-703.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:694-703
    DOI: 10.1016/j.renene.2022.03.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122003020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji-Wook Jang & Chun Du & Yifan Ye & Yongjing Lin & Xiahui Yao & James Thorne & Erik Liu & Gregory McMahon & Junfa Zhu & Ali Javey & Jinghua Guo & Dunwei Wang, 2015. "Enabling unassisted solar water splitting by iron oxide and silicon," Nature Communications, Nature, vol. 6(1), pages 1-5, November.
    2. Fatwa F. Abdi & Lihao Han & Arno H. M. Smets & Miro Zeman & Bernard Dam & Roel van de Krol, 2013. "Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    3. Hemin Zhang & Dongfeng Li & Woo Jin Byun & Xiuli Wang & Tae Joo Shin & Hu Young Jeong & Hongxian Han & Can Li & Jae Sung Lee, 2020. "Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Stephanie J. Boyd & Run Long & Niall J. English, 2022. "Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook," Energies, MDPI, vol. 15(4), pages 1-16, February.
    3. Chao Zhen & Xiangtao Chen & Ruotian Chen & Fengtao Fan & Xiaoxiang Xu & Yuyang Kang & Jingdong Guo & Lianzhou Wang & Gao Qing (Max) Lu & Kazunari Domen & Hui-Ming Cheng & Gang Liu, 2024. "Liquid metal-embraced photoactive films for artificial photosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Zhonghui Zhu & Matyas Daboczi & Minzhi Chen & Yimin Xuan & Xianglei Liu & Salvador Eslava, 2024. "Ultrastable halide perovskite CsPbBr3 photoanodes achieved with electrocatalytic glassy-carbon and boron-doped diamond sheets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Changhao Liu & Ningsi Zhang & Yang Li & Rongli Fan & Wenjing Wang & Jianyong Feng & Chen Liu & Jiaou Wang & Weichang Hao & Zhaosheng Li & Zhigang Zou, 2023. "Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Tian, Tian & Jiang, Guiyuan & Li, Yunlu & Xiang, Wenjing & Fu, Wensheng, 2022. "Unveiling the activity and stability of BiVO4 photoanodes with cocatalyst for water oxidation," Renewable Energy, Elsevier, vol. 199(C), pages 132-139.
    7. Rui-Ting Gao & Jiangwei Zhang & Tomohiko Nakajima & Jinlu He & Xianhu Liu & Xueyuan Zhang & Lei Wang & Limin Wu, 2023. "Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Zeng, Qingyi & Bai, Jing & Li, Jinhua & Li, Linsen & Xia, Ligang & Zhou, Baoxue & Sun, Yugang, 2018. "Highly-stable and efficient photocatalytic fuel cell based on an epitaxial TiO2/WO3/W nanothorn photoanode and enhanced radical reactions for simultaneous electricity production and wastewater treatme," Applied Energy, Elsevier, vol. 220(C), pages 127-137.
    10. Yuyang Pan & Huiyan Zhang & Bowen Zhang & Feng Gong & Jianyong Feng & Huiting Huang & Srinivas Vanka & Ronglei Fan & Qi Cao & Mingrong Shen & Zhaosheng Li & Zhigang Zou & Rui Xiao & Sheng Chu, 2023. "Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Saraswat, Sushil Kumar & Rodene, Dylan D. & Gupta, Ram B., 2018. "Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 228-248.
    12. Simon Caron & Marc Röger & Michael Wullenkord, 2020. "Selection of Solar Concentrator Design Concepts for Planar Photoelectrochemical Water Splitting Devices," Energies, MDPI, vol. 13(19), pages 1-31, October.
    13. Sang Eon Jun & Youn-Hye Kim & Jaehyun Kim & Woo Seok Cheon & Sungkyun Choi & Jinwook Yang & Hoonkee Park & Hyungsoo Lee & Sun Hwa Park & Ki Chang Kwon & Jooho Moon & Soo-Hyun Kim & Ho Won Jang, 2023. "Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Yequan Xiao & Zeyu Fan & Mamiko Nakabayashi & Qiaoqiao Li & Liujiang Zhou & Qian Wang & Changli Li & Naoya Shibata & Kazunari Domen & Yanbo Li, 2022. "Decoupling light absorption and carrier transport via heterogeneous doping in Ta3N5 thin film photoanode," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Maheswari Arunachalam & Rohini Subhash Kanase & Kai Zhu & Soon Hyung Kang, 2023. "Reliable bi-functional nickel-phosphate /TiO2 integration enables stable n-GaAs photoanode for water oxidation under alkaline condition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Lee, Jin Uk & Kim, Jeong Hun & Kang, Kyungwoong & Shin, Yun Seop & Kim, Jin Young & Kim, Jin Hyun & Lee, Jae Sung, 2023. "Bulk and surface modified polycrystalline CuWO4 films for photoelectrochemical water oxidation," Renewable Energy, Elsevier, vol. 203(C), pages 779-787.
    17. Nong, Guangzai & Li, Ming & Chen, Yiyi & Zhou, Zongwen & Wang, Shuangfei, 2015. "Simulation of energy conversion in a plant of photocatalysts water splitting for hydrogen fuel," Energy, Elsevier, vol. 81(C), pages 471-476.
    18. Jie Fu & Zeyu Fan & Mamiko Nakabayashi & Huanxin Ju & Nadiia Pastukhova & Yequan Xiao & Chao Feng & Naoya Shibata & Kazunari Domen & Yanbo Li, 2022. "Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:694-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.