IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31125-6.html
   My bibliography  Save this article

Evaporative water loss of 1.42 million global lakes

Author

Listed:
  • Gang Zhao

    (Carnegie Institution for Science
    Texas A&M University)

  • Yao Li

    (Texas A&M University)

  • Liming Zhou

    (State University of New York at Albany)

  • Huilin Gao

    (Texas A&M University)

Abstract

The evaporative loss from global lakes (natural and artificial) is a critical component of the terrestrial water and energy balance. However, the evaporation volume of these water bodies—from the spatial distribution to the long-term trend—is as of yet unknown. Here, using satellite observations and modeling tools, we quantified the evaporation volume from 1.42 million global lakes from 1985 to 2018. We find that the long-term average lake evaporation is 1500 ± 150 km3 year−1 and it has increased at a rate of 3.12 km3 year−1. The trend attributions include an increasing evaporation rate (58%), decreasing lake ice coverage (23%), and increasing lake surface area (19%). While only accounting for 5% of the global lake storage capacity, artificial lakes (i.e., reservoirs) contribute 16% to the evaporation volume. Our results underline the importance of using evaporation volume, rather than evaporation rate, as the primary index for assessing climatic impacts on lake systems.

Suggested Citation

  • Gang Zhao & Yao Li & Liming Zhou & Huilin Gao, 2022. "Evaporative water loss of 1.42 million global lakes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31125-6
    DOI: 10.1038/s41467-022-31125-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31125-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31125-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sarah W. Cooley & Jonathan C. Ryan & Laurence C. Smith, 2021. "Human alteration of global surface water storage variability," Nature, Nature, vol. 591(7848), pages 78-81, March.
    2. Mathis Loïc Messager & Bernhard Lehner & Günther Grill & Irena Nedeva & Oliver Schmitt, 2016. "Estimating the volume and age of water stored in global lakes using a geo-statistical approach," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    3. Jean-François Pekel & Andrew Cottam & Noel Gorelick & Alan S. Belward, 2016. "High-resolution mapping of global surface water and its long-term changes," Nature, Nature, vol. 540(7633), pages 418-422, December.
    4. Stephen C. Maberly & Ruth A. O’Donnell & R. Iestyn Woolway & Mark E. J. Cutler & Mengyi Gong & Ian D. Jones & Christopher J. Merchant & Claire A. Miller & Eirini Politi & E. Marian Scott & Stephen J. , 2020. "Global lake thermal regions shift under climate change," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Sapna Sharma & Kevin Blagrave & John J. Magnuson & Catherine M. O’Reilly & Samantha Oliver & Ryan D. Batt & Madeline R. Magee & Dietmar Straile & Gesa A. Weyhenmeyer & Luke Winslow & R. Iestyn Woolway, 2019. "Widespread loss of lake ice around the Northern Hemisphere in a warming world," Nature Climate Change, Nature, vol. 9(3), pages 227-231, March.
    6. Xiao Yang & Tamlin M. Pavelsky & George H. Allen, 2020. "The past and future of global river ice," Nature, Nature, vol. 577(7788), pages 69-73, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Li & Shushi Peng & Yi Xi & R. Iestyn Woolway & Gang Liu, 2022. "Earlier ice loss accelerates lake warming in the Northern Hemisphere," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xuehui Pi & Qiuqi Luo & Lian Feng & Yang Xu & Jing Tang & Xiuyu Liang & Enze Ma & Ran Cheng & Rasmus Fensholt & Martin Brandt & Xiaobin Cai & Luke Gibson & Junguo Liu & Chunmiao Zheng & Weifeng Li & B, 2022. "Mapping global lake dynamics reveals the emerging roles of small lakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Björn Nyberg & Gijs Henstra & Rob L. Gawthorpe & Rodmar Ravnås & Juha Ahokas, 2023. "Global scale analysis on the extent of river channel belts," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Kevin Blagrave & Sapna Sharma, 2023. "Projecting climate change impacts on ice phenology across Midwestern and Northeastern United States lakes," Climatic Change, Springer, vol. 176(9), pages 1-19, September.
    6. Yao Li & Gang Zhao & George H. Allen & Huilin Gao, 2023. "Diminishing storage returns of reservoir construction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Somayeh Mohammadi Hamidi & Christine Fürst & Hossein Nazmfar & Ahad Rezayan & Mohammad Hassan Yazdani, 2021. "A Future Study of an Environment Driving Force (EDR): The Impacts of Urmia Lake Water-Level Fluctuations on Human Settlements," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    8. Ya Li & Hanqin Tian & Yuanzhi Yao & Hao Shi & Zihao Bian & Yu Shi & Siyuan Wang & Taylor Maavara & Ronny Lauerwald & Shufen Pan, 2024. "Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Dongmei Feng & Colin J. Gleason & Peirong Lin & Xiao Yang & Ming Pan & Yuta Ishitsuka, 2021. "Recent changes to Arctic river discharge," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    11. Berggreen, Steve & Mattisson, Linn, 2023. "The Curse of Bad Geography: Stagnant Water, Diseases, and Children’s Human Capital," Working Papers 2023:11, Lund University, Department of Economics.
    12. Changda Liu & Jie Li & Qiuhua Tang & Jiawei Qi & Xinghua Zhou, 2022. "Classifying the Nunivak Island Coastline Using the Random Forest Integration of the Sentinel-2 and ICESat-2 Data," Land, MDPI, vol. 11(2), pages 1-15, February.
    13. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    14. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Mohammad Zeynoddin & Hossein Bonakdari & Silvio José Gumiere & Alain N. Rousseau, 2023. "Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    17. Lei Huang & Axel Timmermann & Sun-Seon Lee & Keith B. Rodgers & Ryohei Yamaguchi & Eui-Seok Chung, 2022. "Emerging unprecedented lake ice loss in climate change projections," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Romy Hulskamp & Arjen Luijendijk & Bas Maren & Antonio Moreno-Rodenas & Floris Calkoen & Etiënne Kras & Stef Lhermitte & Stefan Aarninkhof, 2023. "Global distribution and dynamics of muddy coasts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Xuewen Liang & Yue Pan & Cunwu Li & Weixiong Wu & Xusheng Huang, 2023. "Evaluating the Influence of Land Use and Landscape Pattern on the Spatial Pattern of Water Quality in the Pearl River Basin," Sustainability, MDPI, vol. 15(20), pages 1-16, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31125-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.