IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v591y2021i7848d10.1038_s41586-021-03262-3.html
   My bibliography  Save this article

Human alteration of global surface water storage variability

Author

Listed:
  • Sarah W. Cooley

    (Stanford University
    University of Oregon)

  • Jonathan C. Ryan

    (University of Oregon
    Brown University)

  • Laurence C. Smith

    (Brown University
    Brown University)

Abstract

Knowing the extent of human influence on the global hydrological cycle is essential for the sustainability of freshwater resources on Earth1,2. However, a lack of water level observations for the world’s ponds, lakes and reservoirs has limited the quantification of human-managed (reservoir) changes in surface water storage compared to its natural variability3. The global storage variability in surface water bodies and the extent to which it is altered by humans therefore remain unknown. Here we show that 61% per cent of the Earth’s seasonal surface water storage variability occurs in human-managed reservoirs. Using measurements from NASA’s ICESat-2 satellite laser altimeter, which was launched in late 2018, we assemble an extensive global water level dataset that quantifies water level variability for 227,386 water bodies from October 2018 to July 2020. We find that seasonal variability in human-managed reservoirs averages 0.86 metres, whereas natural water bodies vary by only 0.22 metres. Natural variability in surface water storage is greatest in tropical basins, whereas human-managed variability is greatest in the Middle East, southern Africa and the western USA. Strong regional patterns are also found, with human influence driving 67 per cent of surface water storage variability south of 45 degrees north and nearly 100 per cent in certain arid and semi-arid regions. As economic development, population growth and climate change continue to pressure global water resources4, our approach provides a useful baseline from which ICESat-2 and future satellite missions will be able to track human modifications to the global hydrologic cycle.

Suggested Citation

  • Sarah W. Cooley & Jonathan C. Ryan & Laurence C. Smith, 2021. "Human alteration of global surface water storage variability," Nature, Nature, vol. 591(7848), pages 78-81, March.
  • Handle: RePEc:nat:nature:v:591:y:2021:i:7848:d:10.1038_s41586-021-03262-3
    DOI: 10.1038/s41586-021-03262-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03262-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03262-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Zhao & Yao Li & Liming Zhou & Huilin Gao, 2022. "Evaporative water loss of 1.42 million global lakes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Sweta Bhattacharya & Nancy Victor & Rajeswari Chengoden & Murugan Ramalingam & Govardanan Chemmalar Selvi & Praveen Kumar Reddy Maddikunta & Praveen Kumar Donta & Schahram Dustdar & Rutvij H. Jhaveri , 2022. "Blockchain for Internet of Underwater Things: State-of-the-Art, Applications, Challenges, and Future Directions," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    3. Changda Liu & Jie Li & Qiuhua Tang & Jiawei Qi & Xinghua Zhou, 2022. "Classifying the Nunivak Island Coastline Using the Random Forest Integration of the Sentinel-2 and ICESat-2 Data," Land, MDPI, vol. 11(2), pages 1-15, February.
    4. Xuehui Pi & Qiuqi Luo & Lian Feng & Yang Xu & Jing Tang & Xiuyu Liang & Enze Ma & Ran Cheng & Rasmus Fensholt & Martin Brandt & Xiaobin Cai & Luke Gibson & Junguo Liu & Chunmiao Zheng & Weifeng Li & B, 2022. "Mapping global lake dynamics reveals the emerging roles of small lakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Zhilong Zhao & Zengzeng Hu & Jun Zhou & Ruliang Kan & Wangjun Li, 2023. "Response of Two Major Lakes in the Changtang National Nature Reserve, Tibetan Plateau to Climate and Anthropogenic Changes over the Past 50 Years," Land, MDPI, vol. 12(2), pages 1-16, January.
    6. Xuewen Liang & Yue Pan & Cunwu Li & Weixiong Wu & Xusheng Huang, 2023. "Evaluating the Influence of Land Use and Landscape Pattern on the Spatial Pattern of Water Quality in the Pearl River Basin," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    7. Yao Li & Gang Zhao & George H. Allen & Huilin Gao, 2023. "Diminishing storage returns of reservoir construction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Ning Wang & Jingbo Yang & Zaiyong Zhang & Yong Xiao & Hanbing Wang & Jinjun He & Lingqi Yi, 2023. "Analysis of Detailed Lake Variations and Associated Hydrologic Driving Factors in a Semi-Arid Ungauged Closed Watershed," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    9. Tongbi Tu & Lise Comte & Albert Ruhi, 2023. "The color of environmental noise in river networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:591:y:2021:i:7848:d:10.1038_s41586-021-03262-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.