IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30069-1.html
   My bibliography  Save this article

Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration

Author

Listed:
  • Sravani Kondapavulur

    (University of California San Francisco
    University of California San Francisco
    San Francisco Veterans Affairs Medical Center
    University of California San Francisco)

  • Stefan M. Lemke

    (San Francisco Veterans Affairs Medical Center
    University of California San Francisco
    University of California San Francisco)

  • David Darevsky

    (University of California San Francisco
    University of California San Francisco
    San Francisco Veterans Affairs Medical Center
    University of California San Francisco)

  • Ling Guo

    (San Francisco Veterans Affairs Medical Center
    University of California San Francisco
    University of California San Francisco)

  • Preeya Khanna

    (San Francisco Veterans Affairs Medical Center
    University of California San Francisco)

  • Karunesh Ganguly

    (San Francisco Veterans Affairs Medical Center
    University of California San Francisco)

Abstract

Animals can capitalize on invariance in the environment by learning and automating highly consistent actions; however, they must also remain flexible and adapt to environmental changes. It remains unclear how primary motor cortex (M1) can drive precise movements, yet also support behavioral exploration when faced with consistent errors. Using a reach-to-grasp task in rats, along with simultaneous electrophysiological monitoring in M1 and dorsolateral striatum (DLS), we find that behavioral exploration to overcome consistent task errors is closely associated with tandem increases in M1 and DLS neural variability; subsequently, consistent ensemble patterning returns with convergence to a new successful strategy. We also show that compared to reliably patterned intracranial microstimulation in M1, variable stimulation patterns result in significantly greater movement variability. Our results thus indicate that motor and striatal areas can flexibly transition between two modes, reliable neural pattern generation for automatic and precise movements versus variable neural patterning for behavioral exploration.

Suggested Citation

  • Sravani Kondapavulur & Stefan M. Lemke & David Darevsky & Ling Guo & Preeya Khanna & Karunesh Ganguly, 2022. "Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30069-1
    DOI: 10.1038/s41467-022-30069-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30069-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30069-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maria Soledad Esposito & Paolo Capelli & Silvia Arber, 2014. "Brainstem nucleus MdV mediates skilled forelimb motor tasks," Nature, Nature, vol. 508(7496), pages 351-356, April.
    2. Mark W. Howe & Patrick L. Tierney & Stefan G. Sandberg & Paul E. M. Phillips & Ann M. Graybiel, 2013. "Prolonged dopamine signalling in striatum signals proximity and value of distant rewards," Nature, Nature, vol. 500(7464), pages 575-579, August.
    3. Patrick T. Sadtler & Kristin M. Quick & Matthew D. Golub & Steven M. Chase & Stephen I. Ryu & Elizabeth C. Tyler-Kabara & Byron M. Yu & Aaron P. Batista, 2014. "Neural constraints on learning," Nature, Nature, vol. 512(7515), pages 423-426, August.
    4. Mark M. Churchland & John P. Cunningham & Matthew T. Kaufman & Justin D. Foster & Paul Nuyujukian & Stephen I. Ryu & Krishna V. Shenoy, 2012. "Neural population dynamics during reaching," Nature, Nature, vol. 487(7405), pages 51-56, July.
    5. Giorgio Rizzi & Mustafa Coban & Kelly R. Tan, 2019. "Excitatory rubral cells encode the acquisition of novel complex motor tasks," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    6. Michael A. Long & Dezhe Z. Jin & Michale S. Fee, 2010. "Support for a synaptic chain model of neuronal sequence generation," Nature, Nature, vol. 468(7322), pages 394-399, November.
    7. Christina M. Gremel & Rui M. Costa, 2013. "Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions," Nature Communications, Nature, vol. 4(1), pages 1-12, October.
    8. Evren C. Tumer & Michael S. Brainard, 2007. "Performance variability enables adaptive plasticity of ‘crystallized’ adult birdsong," Nature, Nature, vol. 450(7173), pages 1240-1244, December.
    9. Michael Okun & Nicholas A. Steinmetz & Lee Cossell & M. Florencia Iacaruso & Ho Ko & Péter Barthó & Tirin Moore & Sonja B. Hofer & Thomas D. Mrsic-Flogel & Matteo Carandini & Kenneth D. Harris, 2015. "Diverse coupling of neurons to populations in sensory cortex," Nature, Nature, vol. 521(7553), pages 511-515, May.
    10. Andrew J. Peters & Simon X. Chen & Takaki Komiyama, 2014. "Emergence of reproducible spatiotemporal activity during motor learning," Nature, Nature, vol. 510(7504), pages 263-267, June.
    11. Marija Radosevic & Alex Willumsen & Peter C. Petersen & Henrik Lindén & Mikkel Vestergaard & Rune W. Berg, 2019. "Decoupling of timescales reveals sparse convergent CPG network in the adult spinal cord," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    12. T. L. Veuthey & K. Derosier & S. Kondapavulur & K. Ganguly, 2020. "Single-trial cross-area neural population dynamics during long-term skill learning," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    2. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    3. Najet Serradj & Francesca Marino & Yunuen Moreno-López & Amanda Bernstein & Sydney Agger & Marwa Soliman & Andrew Sloan & Edmund Hollis, 2023. "Task-specific modulation of corticospinal neuron activity during motor learning in mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Tanner C Dixon & Christina M Merrick & Joni D Wallis & Richard B Ivry & Jose M Carmena, 2021. "Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-35, November.
    5. Svenja Melbaum & Eleonora Russo & David Eriksson & Artur Schneider & Daniel Durstewitz & Thomas Brox & Ilka Diester, 2022. "Conserved structures of neural activity in sensorimotor cortex of freely moving rats allow cross-subject decoding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Satohiro Tajima & Toru Yanagawa & Naotaka Fujii & Taro Toyoizumi, 2015. "Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-28, November.
    7. Harman Ghuman & Kyungsoo Kim & Sapeeda Barati & Karunesh Ganguly, 2023. "Emergence of task-related spatiotemporal population dynamics in transplanted neurons," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    9. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Shan Yu & Andreas Klaus & Hongdian Yang & Dietmar Plenz, 2014. "Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
    11. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    12. Seetha Krishnan & Chad Heer & Chery Cherian & Mark E. J. Sheffield, 2022. "Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    14. Jonathan Eden & Mario Bräcklein & Jaime Ibáñez & Deren Yusuf Barsakcioglu & Giovanni Di Pino & Dario Farina & Etienne Burdet & Carsten Mehring, 2022. "Principles of human movement augmentation and the challenges in making it a reality," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Adrian M Haith & David M Huberdeau & John W Krakauer, 2015. "Hedging Your Bets: Intermediate Movements as Optimal Behavior in the Context of an Incomplete Decision," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-21, March.
    16. Joshua M Mueller & Primoz Ravbar & Julie H Simpson & Jean M Carlson, 2019. "Drosophila melanogaster grooming possesses syntax with distinct rules at different temporal scales," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-25, June.
    17. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    18. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    19. Ravi Pancholi & Lauren Ryan & Simon Peron, 2023. "Learning in a sensory cortical microstimulation task is associated with elevated representational stability," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30069-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.