IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0099761.html
   My bibliography  Save this article

Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions

Author

Listed:
  • Shan Yu
  • Andreas Klaus
  • Hongdian Yang
  • Dietmar Plenz

Abstract

Identification of cortical dynamics strongly benefits from the simultaneous recording of as many neurons as possible. Yet current technologies provide only incomplete access to the mammalian cortex from which adequate conclusions about dynamics need to be derived. Here, we identify constraints introduced by sub-sampling with a limited number of electrodes, i.e. spatial ‘windowing’, for well-characterized critical dynamics―neuronal avalanches. The local field potential (LFP) was recorded from premotor and prefrontal cortices in two awake macaque monkeys during rest using chronically implanted 96-microelectrode arrays. Negative deflections in the LFP (nLFP) were identified on the full as well as compact sub-regions of the array quantified by the number of electrodes N (10–95), i.e., the window size. Spatiotemporal nLFP clusters organized as neuronal avalanches, i.e., the probability in cluster size, p(s), invariably followed a power law with exponent −1.5 up to N, beyond which p(s) declined more steeply producing a ‘cut-off’ that varied with N and the LFP filter parameters. Clusters of size s≤N consisted mainly of nLFPs from unique, non-repeated cortical sites, emerged from local propagation between nearby sites, and carried spatial information about cluster organization. In contrast, clusters of size s>N were dominated by repeated site activations and carried little spatial information, reflecting greatly distorted sampling conditions. Our findings were confirmed in a neuron-electrode network model. Thus, avalanche analysis needs to be constrained to the size of the observation window to reveal the underlying scale-invariant organization produced by locally unfolding, predominantly feed-forward neuronal cascades.

Suggested Citation

  • Shan Yu & Andreas Klaus & Hongdian Yang & Dietmar Plenz, 2014. "Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
  • Handle: RePEc:plo:pone00:0099761
    DOI: 10.1371/journal.pone.0099761
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099761
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0099761&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0099761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark M. Churchland & John P. Cunningham & Matthew T. Kaufman & Justin D. Foster & Paul Nuyujukian & Stephen I. Ryu & Krishna V. Shenoy, 2012. "Neural population dynamics during reaching," Nature, Nature, vol. 487(7405), pages 51-56, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elliott Capek & Tiago L. Ribeiro & Patrick Kells & Keshav Srinivasan & Stephanie R. Miller & Elias Geist & Mitchell Victor & Ali Vakili & Sinisa Pajevic & Dante R. Chialvo & Dietmar Plenz, 2023. "Parabolic avalanche scaling in the synchronization of cortical cell assemblies," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Ortega, Diego & Rodríguez-Laguna, Javier & Korutcheva, Elka, 2022. "Segregation in spatially structured cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    3. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    4. Adrian M Haith & David M Huberdeau & John W Krakauer, 2015. "Hedging Your Bets: Intermediate Movements as Optimal Behavior in the Context of an Incomplete Decision," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-21, March.
    5. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    6. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    7. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    8. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    9. Sravani Kondapavulur & Stefan M. Lemke & David Darevsky & Ling Guo & Preeya Khanna & Karunesh Ganguly, 2022. "Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Akshay Markanday & Sungho Hong & Junya Inoue & Erik Schutter & Peter Thier, 2023. "Multidimensional cerebellar computations for flexible kinematic control of movements," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. David Kappel & Bernhard Nessler & Wolfgang Maass, 2014. "STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-22, March.
    12. Josh Merel & David Carlson & Liam Paninski & John P Cunningham, 2016. "Neuroprosthetic Decoder Training as Imitation Learning," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-24, May.
    13. Simon Sponberg & Thomas L Daniel & Adrienne L Fairhall, 2015. "Dual Dimensionality Reduction Reveals Independent Encoding of Motor Features in a Muscle Synergy for Insect Flight Control," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-23, April.
    14. Tanner C Dixon & Christina M Merrick & Joni D Wallis & Richard B Ivry & Jose M Carmena, 2021. "Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-35, November.
    15. Svenja Melbaum & Eleonora Russo & David Eriksson & Artur Schneider & Daniel Durstewitz & Thomas Brox & Ilka Diester, 2022. "Conserved structures of neural activity in sensorimotor cortex of freely moving rats allow cross-subject decoding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Yuangen Yao & Haiyou Deng & Chengzhang Ma & Ming Yi & Jun Ma, 2017. "Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-13, January.
    17. Satohiro Tajima & Toru Yanagawa & Naotaka Fujii & Taro Toyoizumi, 2015. "Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-28, November.
    18. Jorge Gámez & Germán Mendoza & Luis Prado & Abraham Betancourt & Hugo Merchant, 2019. "The amplitude in periodic neural state trajectories underlies the tempo of rhythmic tapping," PLOS Biology, Public Library of Science, vol. 17(4), pages 1-32, April.
    19. Maria N Ayala & Denise Y P Henriques, 2018. "Context-dependent concurrent adaptation to static and moving targets," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-23, February.
    20. Maximilian Hoffmann & Jörg Henninger & Johannes Veith & Lars Richter & Benjamin Judkewitz, 2023. "Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0099761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.