IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50563-y.html
   My bibliography  Save this article

Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex

Author

Listed:
  • Edward A. B. Horrocks

    (University College London)

  • Fabio R. Rodrigues

    (University College London)

  • Aman B. Saleem

    (University College London)

Abstract

Time courses of neural responses underlie real-time sensory processing and perception. How these temporal dynamics change may be fundamental to how sensory systems adapt to different perceptual demands. By simultaneously recording from hundreds of neurons in mouse primary visual cortex, we examined neural population responses to visual stimuli at sub-second timescales, during different behavioural states. We discovered that during active behavioural states characterised by locomotion, single-neurons shift from transient to sustained response modes, facilitating rapid emergence of visual stimulus tuning. Differences in single-neuron response dynamics were associated with changes in temporal dynamics of neural correlations, including faster stabilisation of stimulus-evoked changes in the structure of correlations during locomotion. Using Factor Analysis, we examined temporal dynamics of latent population responses and discovered that trajectories of population activity make more direct transitions between baseline and stimulus-encoding neural states during locomotion. This could be partly explained by dampening of oscillatory dynamics present during stationary behavioural states. Functionally, changes in temporal response dynamics collectively enabled faster, more stable and more efficient encoding of new visual information during locomotion. These findings reveal a principle of how sensory systems adapt to perceptual demands, where flexible neural population dynamics govern the speed and stability of sensory encoding.

Suggested Citation

  • Edward A. B. Horrocks & Fabio R. Rodrigues & Aman B. Saleem, 2024. "Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50563-y
    DOI: 10.1038/s41467-024-50563-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50563-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50563-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam C. Snyder & Byron M. Yu & Matthew A. Smith, 2018. "Distinct population codes for attention in the absence and presence of visual stimulation," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    2. Carsen Stringer & Marius Pachitariu & Nicholas Steinmetz & Matteo Carandini & Kenneth D. Harris, 2019. "High-dimensional geometry of population responses in visual cortex," Nature, Nature, vol. 571(7765), pages 361-365, July.
    3. MohammadMehdi Kafashan & Anna W. Jaffe & Selmaan N. Chettih & Ramon Nogueira & Iñigo Arandia-Romero & Christopher D. Harvey & Rubén Moreno-Bote & Jan Drugowitsch, 2021. "Scaling of sensory information in large neural populations shows signatures of information-limiting correlations," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Joshua H. Siegle & Xiaoxuan Jia & Séverine Durand & Sam Gale & Corbett Bennett & Nile Graddis & Greggory Heller & Tamina K. Ramirez & Hannah Choi & Jennifer A. Luviano & Peter A. Groblewski & Ruweida , 2021. "Survey of spiking in the mouse visual system reveals functional hierarchy," Nature, Nature, vol. 592(7852), pages 86-92, April.
    5. Anderson Speed & Joseph Del Rosario & Navid Mikail & Bilal Haider, 2020. "Spatial attention enhances network, cellular and subthreshold responses in mouse visual cortex," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Amelia J. Christensen & Jonathan W. Pillow, 2022. "Reduced neural activity but improved coding in rodent higher-order visual cortex during locomotion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Sadegh Ebrahimi & Jérôme Lecoq & Oleg Rumyantsev & Tugce Tasci & Yanping Zhang & Cristina Irimia & Jane Li & Surya Ganguli & Mark J. Schnitzer, 2022. "Emergent reliability in sensory cortical coding and inter-area communication," Nature, Nature, vol. 605(7911), pages 713-721, May.
    8. Ryan C Williamson & Benjamin R Cowley & Ashok Litwin-Kumar & Brent Doiron & Adam Kohn & Matthew A Smith & Byron M Yu, 2016. "Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    9. Mark M. Churchland & John P. Cunningham & Matthew T. Kaufman & Justin D. Foster & Paul Nuyujukian & Stephen I. Ryu & Krishna V. Shenoy, 2012. "Neural population dynamics during reaching," Nature, Nature, vol. 487(7405), pages 51-56, July.
    10. James J. Jun & Nicholas A. Steinmetz & Joshua H. Siegle & Daniel J. Denman & Marius Bauza & Brian Barbarits & Albert K. Lee & Costas A. Anastassiou & Alexandru Andrei & Çağatay Aydın & Mladen Barbic &, 2017. "Fully integrated silicon probes for high-density recording of neural activity," Nature, Nature, vol. 551(7679), pages 232-236, November.
    11. João D. Semedo & Anna I. Jasper & Amin Zandvakili & Aravind Krishna & Amir Aschner & Christian K. Machens & Adam Kohn & Byron M. Yu, 2022. "Feedforward and feedback interactions between visual cortical areas use different population activity patterns," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camden J. MacDowell & Alexandra Libby & Caroline I. Jahn & Sina Tafazoli & Adel Ardalan & Timothy J. Buschman, 2025. "Multiplexed subspaces route neural activity across brain-wide networks," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    2. Shailaja Akella & Peter Ledochowitsch & Joshua H. Siegle & Hannah Belski & Daniel D. Denman & Michael A. Buice & Severine Durand & Christof Koch & Shawn R. Olsen & Xiaoxuan Jia, 2025. "Deciphering neuronal variability across states reveals dynamic sensory encoding," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    3. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Maximilian Hoffmann & Jörg Henninger & Johannes Veith & Lars Richter & Benjamin Judkewitz, 2023. "Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    6. Elisabeta Balla & Gerion Nabbefeld & Christopher Wiesbrock & Jenice Linde & Severin Graff & Simon Musall & Björn M. Kampa, 2025. "Broadband visual stimuli improve neuronal representation and sensory perception," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    7. Tjitse van der Molen & Max Lim & Julian Bartram & Zhuowei Cheng & Ash Robbins & David F Parks & Linda R Petzold & Andreas Hierlemann & David Haussler & Paul K Hansma & Kenneth R Tovar & Kenneth S Kosi, 2024. "RT-Sort: An action potential propagation-based algorithm for real time spike detection and sorting with millisecond latencies," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-36, December.
    8. Jean-Paul Noel & Edoardo Balzani & Cristina Savin & Dora E. Angelaki, 2024. "Context-invariant beliefs are supported by dynamic reconfiguration of single unit functional connectivity in prefrontal cortex of male macaques," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Omer Hazon & Victor H. Minces & David P. Tomàs & Surya Ganguli & Mark J. Schnitzer & Pablo E. Jercog, 2022. "Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. repec:plo:pcbi00:1007074 is not listed on IDEAS
    11. Yina Wei & Anirban Nandi & Xiaoxuan Jia & Joshua H. Siegle & Daniel Denman & Soo Yeun Lee & Anatoly Buchin & Werner Geit & Clayton P. Mosher & Shawn Olsen & Costas A. Anastassiou, 2023. "Associations between in vitro, in vivo and in silico cell classes in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Disheng Tang & Joel Zylberberg & Xiaoxuan Jia & Hannah Choi, 2024. "Stimulus type shapes the topology of cellular functional networks in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Leslie J. Sibener & Alice C. Mosberger & Tiffany X. Chen & Vivek R. Athalye & James M. Murray & Rui M. Costa, 2025. "Dissociable roles of distinct thalamic circuits in learning reaches to spatial targets," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    14. Spencer Ward & Conor Riley & Erin M. Carey & Jenny Nguyen & Sadik Esener & Axel Nimmerjahn & Donald J. Sirbuly, 2022. "Electro-optical mechanically flexible coaxial microprobes for minimally invasive interfacing with intrinsic neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Aviv Segev & Sukhwan Jung, 2023. "Common knowledge processing patterns in networks of different systems," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-18, October.
    16. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Shan Yu & Andreas Klaus & Hongdian Yang & Dietmar Plenz, 2014. "Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
    18. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    19. Thanh-an Pham & Aleix Boquet-Pujadas & Sandip Mondal & Michael Unser & George Barbastathis, 2024. "Deep-prior ODEs augment fluorescence imaging with chemical sensors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Sara Borgomaneri & Marco Zanon & Paolo Di Luzio & Antonio Cataneo & Giorgio Arcara & Vincenzo Romei & Marco Tamietto & Alessio Avenanti, 2023. "Increasing associative plasticity in temporo-occipital back-projections improves visual perception of emotions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    21. Adam R. Pines & Bart Larsen & Zaixu Cui & Valerie J. Sydnor & Maxwell A. Bertolero & Azeez Adebimpe & Aaron F. Alexander-Bloch & Christos Davatzikos & Damien A. Fair & Ruben C. Gur & Raquel E. Gur & H, 2022. "Dissociable multi-scale patterns of development in personalized brain networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50563-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.