IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59652-y.html
   My bibliography  Save this article

Stabilizing brain-computer interfaces through alignment of latent dynamics

Author

Listed:
  • Brianna M. Karpowicz

    (Emory University and Georgia Institute of Technology)

  • Yahia H. Ali

    (Emory University and Georgia Institute of Technology)

  • Lahiru N. Wimalasena

    (Emory University and Georgia Institute of Technology)

  • Andrew R. Sedler

    (Emory University and Georgia Institute of Technology
    Georgia Institute of Technology)

  • Mohammad Reza Keshtkaran

    (Emory University and Georgia Institute of Technology)

  • Kevin Bodkin

    (Northwestern University)

  • Xuan Ma

    (Northwestern University)

  • Daniel B. Rubin

    (Massachusetts General Hospital
    Harvard Medical School)

  • Ziv M. Williams

    (Harvard Medical School
    Massachusetts General Hospital)

  • Sydney S. Cash

    (Massachusetts General Hospital
    Harvard Medical School)

  • Leigh R. Hochberg

    (Massachusetts General Hospital
    Harvard Medical School
    VA Providence Healthcare System
    Brown University)

  • Lee E. Miller

    (Northwestern University
    Northwestern University
    Northwestern University
    Shirley Ryan AbilityLab)

  • Chethan Pandarinath

    (Emory University and Georgia Institute of Technology
    Emory University)

Abstract

Intracortical brain-computer interfaces (iBCIs) restore motor function to people with paralysis by translating brain activity into control signals for external devices. In current iBCIs, instabilities at the neural interface result in a degradation of decoding performance, which necessitates frequent supervised recalibration using new labeled data. One potential solution is to use the latent manifold structure that underlies neural population activity to facilitate a stable mapping between brain activity and behavior. Recent efforts using unsupervised approaches have improved iBCI stability using this principle; however, existing methods treat each time step as an independent sample and do not account for latent dynamics. Dynamics have been used to enable high-performance prediction of movement intention, and may also help improve stabilization. Here, we present a platform for Nonlinear Manifold Alignment with Dynamics (NoMAD), which stabilizes decoding using recurrent neural network models of dynamics. NoMAD uses unsupervised distribution alignment to update the mapping of nonstationary neural data to a consistent set of neural dynamics, thereby providing stable input to the decoder. In applications to data from monkey motor cortex collected during motor tasks, NoMAD enables accurate behavioral decoding with unparalleled stability over weeks- to months-long timescales without any supervised recalibration.

Suggested Citation

  • Brianna M. Karpowicz & Yahia H. Ali & Lahiru N. Wimalasena & Andrew R. Sedler & Mohammad Reza Keshtkaran & Kevin Bodkin & Xuan Ma & Daniel B. Rubin & Ziv M. Williams & Sydney S. Cash & Leigh R. Hochbe, 2025. "Stabilizing brain-computer interfaces through alignment of latent dynamics," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59652-y
    DOI: 10.1038/s41467-025-59652-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59652-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59652-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. Ethier & E. R. Oby & M. J. Bauman & L. E. Miller, 2012. "Restoration of grasp following paralysis through brain-controlled stimulation of muscles," Nature, Nature, vol. 485(7398), pages 368-371, May.
    2. Francis R. Willett & Donald T. Avansino & Leigh R. Hochberg & Jaimie M. Henderson & Krishna V. Shenoy, 2021. "High-performance brain-to-text communication via handwriting," Nature, Nature, vol. 593(7858), pages 249-254, May.
    3. Patrick T. Sadtler & Kristin M. Quick & Matthew D. Golub & Steven M. Chase & Stephen I. Ryu & Elizabeth C. Tyler-Kabara & Byron M. Yu & Aaron P. Batista, 2014. "Neural constraints on learning," Nature, Nature, vol. 512(7515), pages 423-426, August.
    4. David Sussillo & Sergey D. Stavisky & Jonathan C. Kao & Stephen I. Ryu & Krishna V. Shenoy, 2016. "Making brain–machine interfaces robust to future neural variability," Nature Communications, Nature, vol. 7(1), pages 1-13, December.
    5. Mark M. Churchland & John P. Cunningham & Matthew T. Kaufman & Justin D. Foster & Paul Nuyujukian & Stephen I. Ryu & Krishna V. Shenoy, 2012. "Neural population dynamics during reaching," Nature, Nature, vol. 487(7405), pages 51-56, July.
    6. Jonathan C. Kao & Paul Nuyujukian & Stephen I. Ryu & Mark M. Churchland & John P. Cunningham & Krishna V. Shenoy, 2015. "Single-trial dynamics of motor cortex and their applications to brain-machine interfaces," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    2. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    3. Sravani Kondapavulur & Stefan M. Lemke & David Darevsky & Ling Guo & Preeya Khanna & Karunesh Ganguly, 2022. "Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Tanner C Dixon & Christina M Merrick & Joni D Wallis & Richard B Ivry & Jose M Carmena, 2021. "Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-35, November.
    5. Svenja Melbaum & Eleonora Russo & David Eriksson & Artur Schneider & Daniel Durstewitz & Thomas Brox & Ilka Diester, 2022. "Conserved structures of neural activity in sensorimotor cortex of freely moving rats allow cross-subject decoding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    7. Jonathan A Michaels & Benjamin Dann & Hansjörg Scherberger, 2016. "Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-22, November.
    8. David A. Sabatini & Matthew T. Kaufman, 2024. "Reach-dependent reorientation of rotational dynamics in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Josh Merel & David Carlson & Liam Paninski & John P Cunningham, 2016. "Neuroprosthetic Decoder Training as Imitation Learning," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-24, May.
    10. Han-Lin Hsieh & Maryam M Shanechi, 2018. "Optimizing the learning rate for adaptive estimation of neural encoding models," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-34, May.
    11. Leslie J. Sibener & Alice C. Mosberger & Tiffany X. Chen & Vivek R. Athalye & James M. Murray & Rui M. Costa, 2025. "Dissociable roles of distinct thalamic circuits in learning reaches to spatial targets," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    12. Shan Yu & Andreas Klaus & Hongdian Yang & Dietmar Plenz, 2014. "Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
    13. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    14. Jeffrey D. Laurence-Chasen & Callum F. Ross & Fritzie I. Arce-McShane & Nicholas G. Hatsopoulos, 2023. "Robust cortical encoding of 3D tongue shape during feeding in macaques," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Jonathan Eden & Mario Bräcklein & Jaime Ibáñez & Deren Yusuf Barsakcioglu & Giovanni Di Pino & Dario Farina & Etienne Burdet & Carsten Mehring, 2022. "Principles of human movement augmentation and the challenges in making it a reality," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Adrian M Haith & David M Huberdeau & John W Krakauer, 2015. "Hedging Your Bets: Intermediate Movements as Optimal Behavior in the Context of an Incomplete Decision," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-21, March.
    17. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    18. Shanqing Cai & Subhashini Venugopalan & Katie Seaver & Xiang Xiao & Katrin Tomanek & Sri Jalasutram & Meredith Ringel Morris & Shaun Kane & Ajit Narayanan & Robert L. MacDonald & Emily Kornman & Danie, 2024. "Using large language models to accelerate communication for eye gaze typing users with ALS," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Zhouheng Wang & Nanlin Shi & Yingchao Zhang & Ning Zheng & Haicheng Li & Yang Jiao & Jiahui Cheng & Yutong Wang & Xiaoqing Zhang & Ying Chen & Yihao Chen & Heling Wang & Tao Xie & Yijun Wang & Yinji M, 2023. "Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Edward A. B. Horrocks & Fabio R. Rodrigues & Aman B. Saleem, 2024. "Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59652-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.