IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62069-2.html
   My bibliography  Save this article

Temporal coding carries more stable cortical visual representations than firing rate over time

Author

Listed:
  • Hanlin Zhu

    (Rice University
    Rice University)

  • Fei He

    (Rice University
    Rice University
    Chinese Academy of Sciences)

  • Pavlo Zolotavin

    (Rice University
    Rice University)

  • Saumil Patel

    (Stanford University
    Stanford University
    Stanford University)

  • Andreas S. Tolias

    (Stanford University
    Stanford University
    Stanford University
    Stanford University)

  • Lan Luan

    (Rice University
    Rice University
    Rice University)

  • Chong Xie

    (Rice University
    Rice University
    Rice University)

Abstract

Stably representing recurring visual scenes is crucial for behavior. However, previous studies report varying degrees of gradual neural activity changes over time in slow dynamic (1-5 seconds) firing rate code. Here we show that temporal codes, which capture structures in visually evoked fast (tens of milliseconds) spiking patterns, support the stability of visual representations. We tracked the spiking responses of the same visual cortical populations in male mice for 15 consecutive days using custom-developed, large-scale, ultraflexible electrode arrays. Across various stimuli, neurons exhibited different day-to-day stability in their firing rate-based tuning. The across day stability correlated with tuning reliability. Notably, temporal codes increased single neuron tuning stability, especially for less reliable neurons. Temporal coding further improved population representation discriminability and decoding accuracy. The stability of temporal codes was more correlated with network functional connectivity than rate coding. Thus, temporal coding may be essential in ensuring consistent sensory experiences over time.

Suggested Citation

  • Hanlin Zhu & Fei He & Pavlo Zolotavin & Saumil Patel & Andreas S. Tolias & Lan Luan & Chong Xie, 2025. "Temporal coding carries more stable cortical visual representations than firing rate over time," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62069-2
    DOI: 10.1038/s41467-025-62069-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62069-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62069-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Scholl & Connon I. Thomas & Melissa A. Ryan & Naomi Kamasawa & David Fitzpatrick, 2021. "Author Correction: Cortical response selectivity derives from strength in numbers of synapses," Nature, Nature, vol. 590(7846), pages 51-51, February.
    2. Lin Zhong & Scott Baptista & Rachel Gattoni & Jon Arnold & Daniel Flickinger & Carsen Stringer & Marius Pachitariu, 2025. "Unsupervised pretraining in biological neural networks," Nature, Nature, vol. 644(8077), pages 741-748, August.
    3. Tyler D. Marks & Michael J. Goard, 2021. "Author Correction: Stimulus-dependent representational drift in primary visual cortex," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    4. Weizhen Xie & John H. Wittig & Julio I. Chapeton & Mostafa El-Kalliny & Samantha N. Jackson & Sara K. Inati & Kareem A. Zaghloul, 2024. "Neuronal sequences in population bursts encode information in human cortex," Nature, Nature, vol. 635(8040), pages 935-942, November.
    5. L. Federico Rossi & Kenneth D. Harris & Matteo Carandini, 2020. "Spatial connectivity matches direction selectivity in visual cortex," Nature, Nature, vol. 588(7839), pages 648-652, December.
    6. Nghia D. Nguyen & Andrew Lutas & Oren Amsalem & Jesseba Fernando & Andy Young-Eon Ahn & Richard Hakim & Josselyn Vergara & Justin McMahon & Jordane Dimidschstein & Bernardo L. Sabatini & Mark L. Ander, 2024. "Cortical reactivations predict future sensory responses," Nature, Nature, vol. 625(7993), pages 110-118, January.
    7. Ji Xia & Tyler D. Marks & Michael J. Goard & Ralf Wessel, 2021. "Stable representation of a naturalistic movie emerges from episodic activity with gain variability," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Carl E. Schoonover & Sarah N. Ohashi & Richard Axel & Andrew J. P. Fink, 2021. "Representational drift in primary olfactory cortex," Nature, Nature, vol. 594(7864), pages 541-546, June.
    9. Carsen Stringer & Marius Pachitariu & Nicholas Steinmetz & Matteo Carandini & Kenneth D. Harris, 2019. "High-dimensional geometry of population responses in visual cortex," Nature, Nature, vol. 571(7765), pages 361-365, July.
    10. Joel Bauer & Uwe Lewin & Elizabeth Herbert & Julijana Gjorgjieva & Carl E. Schoonover & Andrew J. P. Fink & Tobias Rose & Tobias Bonhoeffer & Mark Hübener, 2024. "Sensory experience steers representational drift in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Shailaja Akella & Peter Ledochowitsch & Joshua H. Siegle & Hannah Belski & Daniel D. Denman & Michael A. Buice & Severine Durand & Christof Koch & Shawn R. Olsen & Xiaoxuan Jia, 2025. "Deciphering neuronal variability across states reveals dynamic sensory encoding," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    12. Benjamin Scholl & Connon I. Thomas & Melissa A. Ryan & Naomi Kamasawa & David Fitzpatrick, 2021. "Cortical response selectivity derives from strength in numbers of synapses," Nature, Nature, vol. 590(7844), pages 111-114, February.
    13. Sonja B. Hofer & Thomas D. Mrsic-Flogel & Tobias Bonhoeffer & Mark Hübener, 2009. "Experience leaves a lasting structural trace in cortical circuits," Nature, Nature, vol. 457(7227), pages 313-317, January.
    14. Joshua H. Siegle & Xiaoxuan Jia & Séverine Durand & Sam Gale & Corbett Bennett & Nile Graddis & Greggory Heller & Tamina K. Ramirez & Hannah Choi & Jennifer A. Luviano & Peter A. Groblewski & Ruweida , 2021. "Survey of spiking in the mouse visual system reveals functional hierarchy," Nature, Nature, vol. 592(7852), pages 86-92, April.
    15. Shan Shen & Xiaolong Jiang & Federico Scala & Jiakun Fu & Paul Fahey & Dmitry Kobak & Zhenghuan Tan & Na Zhou & Jacob Reimer & Fabian Sinz & Andreas S. Tolias, 2022. "Distinct organization of two cortico-cortical feedback pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Tyler D. Marks & Michael J. Goard, 2021. "Stimulus-dependent representational drift in primary visual cortex," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    17. Andreas J. Keller & Morgane M. Roth & Massimo Scanziani, 2020. "Feedback generates a second receptive field in neurons of the visual cortex," Nature, Nature, vol. 582(7813), pages 545-549, June.
    18. Michael Okun & Nicholas A. Steinmetz & Lee Cossell & M. Florencia Iacaruso & Ho Ko & Péter Barthó & Tirin Moore & Sonja B. Hofer & Thomas D. Mrsic-Flogel & Matteo Carandini & Kenneth D. Harris, 2015. "Diverse coupling of neurons to populations in sensory cortex," Nature, Nature, vol. 521(7553), pages 511-515, May.
    19. Edward A. B. Horrocks & Fabio R. Rodrigues & Aman B. Saleem, 2024. "Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    20. Takashi Yoshida & Kenichi Ohki, 2020. "Natural images are reliably represented by sparse and variable populations of neurons in visual cortex," Nature Communications, Nature, vol. 11(1), pages 1-19, December.
    21. M. Florencia Iacaruso & Ioana T. Gasler & Sonja B. Hofer, 2017. "Synaptic organization of visual space in primary visual cortex," Nature, Nature, vol. 547(7664), pages 449-452, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Joel Bauer & Uwe Lewin & Elizabeth Herbert & Julijana Gjorgjieva & Carl E. Schoonover & Andrew J. P. Fink & Tobias Rose & Tobias Bonhoeffer & Mark Hübener, 2024. "Sensory experience steers representational drift in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Hannah Muysers & Hung-Ling Chen & Johannes Hahn & Shani Folschweiller & Torfi Sigurdsson & Jonas-Frederic Sauer & Marlene Bartos, 2024. "A persistent prefrontal reference frame across time and task rules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Han Chin Wang & Amy M. LeMessurier & Daniel E. Feldman, 2022. "Tuning instability of non-columnar neurons in the salt-and-pepper whisker map in somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Ravi Pancholi & Lauren Ryan & Simon Peron, 2023. "Learning in a sensory cortical microstimulation task is associated with elevated representational stability," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Jason J. Moore & Shannon K. Rashid & Emmett Bicker & Cara D. Johnson & Naomi Codrington & Dmitri B. Chklovskii & Jayeeta Basu, 2025. "Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    8. Kyle Aitken & Marina Garrett & Shawn Olsen & Stefan Mihalas, 2022. "The geometry of representational drift in natural and artificial neural networks," PLOS Computational Biology, Public Library of Science, vol. 18(11), pages 1-41, November.
    9. Alejandro Tlaie & Katharine Shapcott & Thijs L van der Plas & James Rowland & Robert Lees & Joshua Keeling & Adam Packer & Paul Tiesinga & Marieke L Schölvinck & Martha N Havenith, 2024. "What does the mean mean? A simple test for neuroscience," PLOS Computational Biology, Public Library of Science, vol. 20(4), pages 1-32, April.
    10. Disheng Tang & Joel Zylberberg & Xiaoxuan Jia & Hannah Choi, 2024. "Stimulus type shapes the topology of cellular functional networks in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Zvi N. Roth & Elisha P. Merriam, 2023. "Representations in human primary visual cortex drift over time," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Katya Tsimring & Kyle R. Jenks & Claudia Cusseddu & Greggory R. Heller & Jacque Pak Kan Ip & Julijana Gjorgjieva & Mriganka Sur, 2025. "Large-scale synaptic dynamics drive the reconstruction of binocular circuits in mouse visual cortex," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    13. Amber Marijn Brands & Sasha Devore & Orrin Devinsky & Werner Doyle & Adeen Flinker & Daniel Friedman & Patricia Dugan & Jonathan Winawer & Iris Isabelle Anna Groen, 2024. "Temporal dynamics of short-term neural adaptation across human visual cortex," PLOS Computational Biology, Public Library of Science, vol. 20(5), pages 1-31, May.
    14. Elisabeta Balla & Gerion Nabbefeld & Christopher Wiesbrock & Jenice Linde & Severin Graff & Simon Musall & Björn M. Kampa, 2025. "Broadband visual stimuli improve neuronal representation and sensory perception," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    15. Ye, Ye & Zhai, Zhuo-yuan & Wen, Tao & Wang, Lu & Cheong, Kang Hao & Xie, Neng-gang, 2025. "Network switching can improve system order," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    16. Edward A. B. Horrocks & Fabio R. Rodrigues & Aman B. Saleem, 2024. "Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    17. Jean-Paul Noel & Edoardo Balzani & Cristina Savin & Dora E. Angelaki, 2024. "Context-invariant beliefs are supported by dynamic reconfiguration of single unit functional connectivity in prefrontal cortex of male macaques," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Christoph Stöckl & Yukun Yang & Wolfgang Maass, 2024. "Local prediction-learning in high-dimensional spaces enables neural networks to plan," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62069-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.