IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925004126.html
   My bibliography  Save this article

Network switching can improve system order

Author

Listed:
  • Ye, Ye
  • Zhai, Zhuo-yuan
  • Wen, Tao
  • Wang, Lu
  • Cheong, Kang Hao
  • Xie, Neng-gang

Abstract

Building upon the theoretical framework of Parrondo's games, this study explores the impact of network dynamic switching, particularly in multilayer networks, on system order. Two 9-node multilayer network systems were constructed, accompanied by the design of an update rule for individual states. System entropy was used as an evaluation index for system order, and a theoretical analysis of system entropy was conducted using the discrete Markov chain method. The findings indicate that switching between multilayer networks effectively enhances system order. Furthermore, simulation results show that in multilayer BA scale-free network systems, network switching further contributes to the enhancement of system order. The coupling and network switching of multilayer networks may complement each other in enhancing the internal order of the system. Coupling enhances the synergy between different network layers, while network switching increases entanglement and mutual information between individuals and their small habitats. This dual mechanism reduces the diversity of system states and promotes greater internal order.

Suggested Citation

  • Ye, Ye & Zhai, Zhuo-yuan & Wen, Tao & Wang, Lu & Cheong, Kang Hao & Xie, Neng-gang, 2025. "Network switching can improve system order," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004126
    DOI: 10.1016/j.chaos.2025.116399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Scholl & Connon I. Thomas & Melissa A. Ryan & Naomi Kamasawa & David Fitzpatrick, 2021. "Author Correction: Cortical response selectivity derives from strength in numbers of synapses," Nature, Nature, vol. 590(7846), pages 51-51, February.
    2. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    3. Gregory P. Harmer & Derek Abbott, 1999. "Losing strategies can win by Parrondo's paradox," Nature, Nature, vol. 402(6764), pages 864-864, December.
    4. Mendoza, Steve A. & Matt, Eliza W. & Guimarães-Blandón, Diego R. & Peacock-López, Enrique, 2018. "Parrondo’s paradox or chaos control in discrete two-dimensional dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 86-93.
    5. Benjamin Scholl & Connon I. Thomas & Melissa A. Ryan & Naomi Kamasawa & David Fitzpatrick, 2021. "Cortical response selectivity derives from strength in numbers of synapses," Nature, Nature, vol. 590(7844), pages 111-114, February.
    6. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    7. Qi Su & Alex McAvoy & Yoichiro Mori & Joshua B. Plotkin, 2022. "Evolution of prosocial behaviours in multilayer populations," Nature Human Behaviour, Nature, vol. 6(3), pages 338-348, March.
    8. Zhu, Linhe & Liu, Wenshan & Zhang, Zhengdi, 2021. "Interplay between epidemic and information spreading on multiplex networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 268-279.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chaoqian & Sun, Chengbin, 2023. "Public goods game across multilayer populations with different densities," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Yan, Zeyuan & Zhao, Hui & Liang, Shu & Li, Li & Song, Yanjie, 2024. "Inter-layer feedback mechanism with reinforcement learning boosts the evolution of cooperation in multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    3. Chaoqian Wang & Matjaž Perc & Attila Szolnoki, 2024. "Evolutionary dynamics of any multiplayer game on regular graphs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Zou, Kuan & Huang, Changwei, 2024. "Incorporating reputation into reinforcement learning can promote cooperation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    5. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Lai, Joel Weijia & Cheong, Kang Hao, 2022. "Risk-taking in social Parrondo’s games can lead to Simpson’s paradox," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Lyu, Ding & Liu, Hanxiao & Wang, Lin & Wang, Xiaofan, 2024. "Evolution of cooperation in a mixed cooperative–competitive structured population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
    8. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    9. Katya Tsimring & Kyle R. Jenks & Claudia Cusseddu & Greggory R. Heller & Jacque Pak Kan Ip & Julijana Gjorgjieva & Mriganka Sur, 2025. "Large-scale synaptic dynamics drive the reconstruction of binocular circuits in mouse visual cortex," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    10. Federico Malizia & Santiago Lamata-Otín & Mattia Frasca & Vito Latora & Jesús Gómez-Gardeñes, 2025. "Hyperedge overlap drives explosive transitions in systems with higher-order interactions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    12. Guilherme Ferraz de Arruda & Giovanni Petri & Pablo Martin Rodriguez & Yamir Moreno, 2023. "Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Arnaud Z. Dragicevic, 2025. "The Price Identity of Replicator(–Mutator) Dynamics on Graphs with Quantum Strategies in a Public Goods Game," Dynamic Games and Applications, Springer, vol. 15(1), pages 74-102, March.
    14. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    15. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    16. Wang, Chengjie & Deng, Juan & Zhao, Hui & Li, Li, 2024. "Effect of Q-learning on the evolution of cooperation behavior in collective motion: An improved Vicsek model," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    17. Zhang, Zehui & Zhu, Kangci & Wang, Fang, 2025. "Indirect information propagation model with time-delay effect on multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    18. repec:plo:pone00:0067924 is not listed on IDEAS
    19. Fang, Fanshu & Ma, Jing & Ma, Yin-Jie & Boccaletti, Stefano, 2024. "Social contagion on higher-order networks: The effect of relationship strengths," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    20. Andrea Santoro & Federico Battiston & Maxime Lucas & Giovanni Petri & Enrico Amico, 2024. "Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    21. Li, Xiaopeng & Han, Weiwei & Yang, Wenjun & Wang, Juan & Xia, Chengyi & Li, Hui-jia & Shi, Yong, 2022. "Impact of resource-based conditional interaction on cooperation in spatial social dilemmas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.