IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27225-4.html
   My bibliography  Save this article

Multi-decadal increase of forest burned area in Australia is linked to climate change

Author

Listed:
  • Josep G. Canadell

    (Climate Science Centre, CSIRO Oceans and Atmosphere)

  • C. P. (Mick) Meyer

    (Climate Science Centre, CSIRO Oceans and Atmosphere)

  • Garry D. Cook

    (CSIRO Land and Water, CSIRO Land and Water, PMB 44)

  • Andrew Dowdy

    (Bureau of Meteorology, Climate Research Section, Bureau of Meteorology)

  • Peter R. Briggs

    (Climate Science Centre, CSIRO Oceans and Atmosphere)

  • Jürgen Knauer

    (Climate Science Centre, CSIRO Oceans and Atmosphere)

  • Acacia Pepler

    (Bureau of Meteorology, Climate Research Section, Bureau of Meteorology)

  • Vanessa Haverd

    (Climate Science Centre, CSIRO Oceans and Atmosphere)

Abstract

Fire activity in Australia is strongly affected by high inter-annual climate variability and extremes. Through changes in the climate, anthropogenic climate change has the potential to alter fire dynamics. Here we compile satellite (19 and 32 years) and ground-based (90 years) burned area datasets, climate and weather observations, and simulated fuel loads for Australian forests. Burned area in Australia’s forests shows a linear positive annual trend but an exponential increase during autumn and winter. The mean number of years since the last fire has decreased consecutively in each of the past four decades, while the frequency of forest megafire years (>1 Mha burned) has markedly increased since 2000. The increase in forest burned area is consistent with increasingly more dangerous fire weather conditions, increased risk factors associated with pyroconvection, including fire-generated thunderstorms, and increased ignitions from dry lightning, all associated to varying degrees with anthropogenic climate change.

Suggested Citation

  • Josep G. Canadell & C. P. (Mick) Meyer & Garry D. Cook & Andrew Dowdy & Peter R. Briggs & Jürgen Knauer & Acacia Pepler & Vanessa Haverd, 2021. "Multi-decadal increase of forest burned area in Australia is linked to climate change," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27225-4
    DOI: 10.1038/s41467-021-27225-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27225-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27225-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mingkai Jiang & Belinda E. Medlyn & John E. Drake & Remko A. Duursma & Ian C. Anderson & Craig V. M. Barton & Matthias M. Boer & Yolima Carrillo & Laura Castañeda-Gómez & Luke Collins & Kristine Y. Cr, 2020. "The fate of carbon in a mature forest under carbon dioxide enrichment," Nature, Nature, vol. 580(7802), pages 227-231, April.
    2. Andrew D. King & Andy J. Pitman & Benjamin J. Henley & Anna M. Ukkola & Josephine R. Brown, 2020. "The role of climate variability in Australian drought," Nature Climate Change, Nature, vol. 10(3), pages 177-179, March.
    3. Henriette I. Jager & Charles C. Coutant, 2020. "Knitting while Australia burns," Nature Climate Change, Nature, vol. 10(3), pages 170-170, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark A. Adams & Mathias Neumann, 2023. "Litter accumulation and fire risks show direct and indirect climate-dependence at continental scale," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Venn, Tyron J., 2023. "Reconciling timber harvesting, biodiversity conservation and carbon sequestration in Queensland, Australia," Forest Policy and Economics, Elsevier, vol. 152(C).
    3. Sarah Clement, 2022. "Knowledge governance for the Anthropocene: Pluralism, populism, and decision‐making," Global Policy, London School of Economics and Political Science, vol. 13(S3), pages 11-23, December.
    4. Timothy Neal, 2023. "The Importance of External Weather Effects in Projecting the Economic Impacts of Climate Change," Discussion Papers 2023-09, School of Economics, The University of New South Wales.
    5. Binod Pokharel & Shankar Sharma & Jacob Stuivenvolt-Allen & Shih-Yu Simon Wang & Matthew LaPlante & Robert R. Gillies & Sujan Khanal & Michael Wehner & Alan Rhoades & Kalpana Hamal & Benjamin Hatchett, 2023. "Amplified drought trends in Nepal increase the potential for Himalayan wildfires," Climatic Change, Springer, vol. 176(2), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuquan Qu & Diego G. Miralles & Sander Veraverbeke & Harry Vereecken & Carsten Montzka, 2023. "Wildfire precursors show complementary predictability in different timescales," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Alisson Lopes Rodrigues & Lineu Neiva Rodrigues & Guilherme Fernandes Marques & Pedro Manuel Villa, 2023. "Simulation Model to Assess the Water Dynamics in Small Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2019-2038, March.
    3. Mark C. Quigley & Januka Attanayake & Andrew King & Fabian Prideaux, 2020. "A multi-hazards earth science perspective on the COVID-19 pandemic: the potential for concurrent and cascading crises," Environment Systems and Decisions, Springer, vol. 40(2), pages 199-215, June.
    4. Monzur A. Imteaz & Mohammad S. Khan & Abdullah G. Yilmaz & Abdallah Shanableh, 2023. "Climate Change Impacts on Rainwater Tank’s Potential Water Savings, Efficiency and Reliability Presenting Relationship Between ‘Seasonality Index’ and Water Savings Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4345-4361, September.
    5. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Alex Dunne & Yuriy Kuleshov, 2023. "Drought risk assessment and mapping for the Murray–Darling Basin, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 839-863, January.
    7. Timothy Clune & Ana Horta, 2020. "Climate Variation—A Perceived Drag on Rural Business Performance," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    8. Tugrul Varol & Ayhan Atesoglu & Halil Baris Ozel & Mehmet Cetin, 2023. "Copula-based multivariate standardized drought index (MSDI) and length, severity, and frequency of hydrological drought in the Upper Sakarya Basin, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3669-3683, April.
    9. Gokhan Yildirim & Ataur Rahman, 2022. "Homogeneity and trend analysis of rainfall and droughts over Southeast Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1657-1683, June.
    10. Monzur A. Imteaz & Iqbal Hossain, 2023. "Climate Change Impacts on ‘Seasonality Index’ and its Potential Implications on Rainwater Savings," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2593-2606, May.
    11. Joan P. Casas-Ruiz & Pascal Bodmer & Kelly Ann Bona & David Butman & Mathilde Couturier & Erik J. S. Emilson & Kerri Finlay & Hélène Genet & Daniel Hayes & Jan Karlsson & David Paré & Changhui Peng & , 2023. "Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Jessica Stubenrauch & Beatrice Garske & Felix Ekardt & Katharina Hagemann, 2022. "European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target," Sustainability, MDPI, vol. 14(7), pages 1-35, April.
    13. Jessica Bhardwaj & Yuriy Kuleshov & Andrew B. Watkins & Isabella Aitkenhead & Atifa Asghari, 2021. "Building capacity for a user-centred Integrated Early Warning System (I-EWS) for drought in the Northern Murray-Darling Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 97-122, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27225-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.