IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37166-9.html
   My bibliography  Save this article

Litter accumulation and fire risks show direct and indirect climate-dependence at continental scale

Author

Listed:
  • Mark A. Adams

    (Swinburne University of Technology)

  • Mathias Neumann

    (Swinburne University of Technology
    University of Natural Resources and Life Sciences)

Abstract

Litter decomposition / accumulation are rate limiting steps in soil formation, carbon sequestration, nutrient cycling and fire risk in temperate forests, highlighting the importance of robust predictive models at all geographic scales. Using a data set for the Australian continent, we show that among a range of models, >60% of the variance in litter mass over a 40-year time span can be accounted for by a parsimonious model with elapsed time, and indices of aridity and litter quality, as independent drivers. Aridity is an important driver of variation across large geographic and climatic ranges while litter quality shows emergent properties of climate-dependence. Up to 90% of variance in litter mass for individual forest types can be explained using models of identical structure. Results provide guidance for future decomposition studies. Algorithms reported here can significantly improve accuracy and reliability of predictions of carbon and nutrient dynamics and fire risk.

Suggested Citation

  • Mark A. Adams & Mathias Neumann, 2023. "Litter accumulation and fire risks show direct and indirect climate-dependence at continental scale," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37166-9
    DOI: 10.1038/s41467-023-37166-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37166-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37166-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Josep G. Canadell & C. P. (Mick) Meyer & Garry D. Cook & Andrew Dowdy & Peter R. Briggs & Jürgen Knauer & Acacia Pepler & Vanessa Haverd, 2021. "Multi-decadal increase of forest burned area in Australia is linked to climate change," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Akira S. Mori & J. Hans C. Cornelissen & Saori Fujii & Kei-ichi Okada & Forest Isbell, 2020. "A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. B. S. Steidinger & T. W. Crowther & J. Liang & M. E. Nuland & G. D. A. Werner & P. B. Reich & G. J. Nabuurs & S. de-Miguel & M. Zhou & N. Picard & B. Herault & X. Zhao & C. Zhang & D. Routh & K. G. Pe, 2019. "Author Correction: Climatic controls of decomposition drive the global biogeography of forest-tree symbioses," Nature, Nature, vol. 571(7765), pages 8-8, July.
    4. B. S. Steidinger & T. W. Crowther & J. Liang & M. E. Nuland & G. D. A. Werner & P. B. Reich & G. J. Nabuurs & S. de-Miguel & M. Zhou & N. Picard & B. Herault & X. Zhao & C. Zhang & D. Routh & K. G. Pe, 2019. "Climatic controls of decomposition drive the global biogeography of forest-tree symbioses," Nature, Nature, vol. 569(7756), pages 404-408, May.
    5. Michael D. Crisp & Geoffrey E. Burrows & Lyn G. Cook & Andrew H. Thornhill & David M. J. S. Bowman, 2011. "Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    6. William H. Schlesinger & John Lichter, 2001. "Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2," Nature, Nature, vol. 411(6836), pages 466-469, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fantin Mesny & Shingo Miyauchi & Thorsten Thiergart & Brigitte Pickel & Lea Atanasova & Magnus Karlsson & Bruno Hüttel & Kerrie W. Barry & Sajeet Haridas & Cindy Chen & Diane Bauer & William Andreopou, 2021. "Genetic determinants of endophytism in the Arabidopsis root mycobiome," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Pretzsch, Hans, 2022. "Facilitation and competition reduction in tree species mixtures in Central Europe: Consequences for growth modeling and forest management," Ecological Modelling, Elsevier, vol. 464(C).
    3. Lingyan Zhou & Xuhui Zhou & Yanghui He & Yuling Fu & Zhenggang Du & Meng Lu & Xiaoying Sun & Chenghao Li & Chunyan Lu & Ruiqiang Liu & Guiyao Zhou & Shahla Hosseni Bai & Madhav P. Thakur, 2022. "Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xuejun Yang & Carol C. Baskin & Jerry M. Baskin & Robin J. Pakeman & Zhenying Huang & Ruiru Gao & Johannes H. C. Cornelissen, 2021. "Global patterns of potential future plant diversity hidden in soil seed banks," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Angélica Ochoa-Beltrán & Johanna Andrea Martínez-Villa & Peter G. Kennedy & Beatriz Salgado-Negret & Alvaro Duque, 2021. "Plant Trait Assembly in Species-Rich Forests at Varying Elevations in the Northwest Andes of Colombia," Land, MDPI, vol. 10(10), pages 1-15, October.
    6. Tarquin Netherway & Jan Bengtsson & Franz Buegger & Joachim Fritscher & Jane Oja & Karin Pritsch & Falk Hildebrand & Eveline J. Krab & Mohammad Bahram, 2024. "Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Maoyuan Feng & Shushi Peng & Yilong Wang & Philippe Ciais & Daniel S. Goll & Jinfeng Chang & Yunting Fang & Benjamin Z. Houlton & Gang Liu & Yan Sun & Yi Xi, 2023. "Overestimated nitrogen loss from denitrification for natural terrestrial ecosystems in CMIP6 Earth System Models," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Shan Luo & Richard P. Phillips & Insu Jo & Songlin Fei & Jingjing Liang & Bernhard Schmid & Nico Eisenhauer, 2023. "Higher productivity in forests with mixed mycorrhizal strategies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Yuan, Fengming & Arain, M. Altaf & Black, T. Andrew & Morgenstern, Kai, 2007. "Energy and water exchanges modulated by soil–plant nitrogen cycling in a temperate Pacific Northwest conifer forest," Ecological Modelling, Elsevier, vol. 201(3), pages 331-347.
    10. Binod Pokharel & Shankar Sharma & Jacob Stuivenvolt-Allen & Shih-Yu Simon Wang & Matthew LaPlante & Robert R. Gillies & Sujan Khanal & Michael Wehner & Alan Rhoades & Kalpana Hamal & Benjamin Hatchett, 2023. "Amplified drought trends in Nepal increase the potential for Himalayan wildfires," Climatic Change, Springer, vol. 176(2), pages 1-21, February.
    11. Binkley, Clark S. & Brand, David & Harkin, Zoe & Bull, Gary & Ravindranath, N. H. & Obersteiner, Michael & Nilsson, Sten & Yamagata, Yoshiki & Krott, Max, 2002. "Carbon sink by the forest sector--options and needs for implementation," Forest Policy and Economics, Elsevier, vol. 4(1), pages 65-77, May.
    12. Jonas Schöley, 2021. "The centered ternary balance scheme: A technique to visualize surfaces of unbalanced three-part compositions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(19), pages 443-458.
    13. Venn, Tyron J., 2023. "Reconciling timber harvesting, biodiversity conservation and carbon sequestration in Queensland, Australia," Forest Policy and Economics, Elsevier, vol. 152(C).
    14. Timothy Neal, 2023. "The Importance of External Weather Effects in Projecting the Economic Impacts of Climate Change," Discussion Papers 2023-09, School of Economics, The University of New South Wales.
    15. Baldauf, Thomas & Plugge, Daniel & Rqibate, Aziza & Leischner, Bettina & Dieter, Matthias & Köhl, Michael, 2010. "Development of a holistic methodology for implementing a REDD-scheme at the example of Madagascar," Work report of the Institute for World Forestry 2010/2, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    16. Sarah Clement, 2022. "Knowledge governance for the Anthropocene: Pluralism, populism, and decision‐making," Global Policy, London School of Economics and Political Science, vol. 13(S3), pages 11-23, December.
    17. Pawelzik, P. & Carus, M. & Hotchkiss, J. & Narayan, R. & Selke, S. & Wellisch, M. & Weiss, M. & Wicke, B. & Patel, M.K., 2013. "Critical aspects in the life cycle assessment (LCA) of bio-based materials – Reviewing methodologies and deriving recommendations," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 211-228.
    18. Cairns, Robert D. & Lasserre, Pierre, 2006. "Implementing carbon credits for forests based on green accounting," Ecological Economics, Elsevier, vol. 56(4), pages 610-621, April.
    19. Steven W. Leavitt & Li Cheng & David G. Williams & Talbot Brooks & Bruce A. Kimball & Paul J. Pinter & Gerard W. Wall & Michael J. Ottman & Allan D. Matthias & Eldor A. Paul & Thomas L. Thompson & Nea, 2022. "Soil Organic Carbon Isotope Tracing in Sorghum under Ambient CO 2 and Free-Air CO 2 Enrichment (FACE)," Land, MDPI, vol. 11(2), pages 1-15, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37166-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.