IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v115y2023i1d10.1007_s11069-022-05576-5.html
   My bibliography  Save this article

Drought risk assessment and mapping for the Murray–Darling Basin, Australia

Author

Listed:
  • Alex Dunne

    (Monash University
    Bureau of Meteorology)

  • Yuriy Kuleshov

    (Bureau of Meteorology
    Royal Melbourne Institute of Technology (RMIT) University)

Abstract

Drought risk assessment for the Murray–Darling Basin (MDB), a drought-prone agricultural region in Australia, was conducted. Region- and agricultural sector-specific indicators of drought hazard, exposure, and vulnerability were selected to calculate the drought risk index. To represent hazardous drought conditions, the Standardized Precipitation Index, Vegetation Health Index, and Root Zone Soil Moisture were used. Population density, land use, and elevation were chosen as drought exposure indicators. Agricultural occupation, soil sand percentage, and Socio-Economic Indexes for Areas (SEIFA) were selected as drought vulnerability indicators. Thematic layers of the drought risk index and its components, hazard, exposure, and vulnerability, were prepared using ArcGIS. A case study for the 2019 drought was investigated and monthly drought risk index maps at the Local Government Area (LGA) level were produced. Overall, the maps demonstrated the presence of extreme drought risk conditions in many LGAs during the austral winter, spring and summer, with the autumn months in lower drought risk categories. The LGAs in the northern and eastern parts of the MDB were in severe-to-extreme drought risk categories during most of the study period. In December, at the peak of drought, almost 90% of the MDB covering the majority of the northern, eastern, and central regions was categorised at severe-to-extreme drought risk levels. Furthermore, the analysis identified a flash drought event in the southern MDB in March–April. The region- and sector-specific drought risk index developed in this study can enhance the user relevance of early warning system information and assist decision-makers in implementing proactive drought adaptation strategies.

Suggested Citation

  • Alex Dunne & Yuriy Kuleshov, 2023. "Drought risk assessment and mapping for the Murray–Darling Basin, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 839-863, January.
  • Handle: RePEc:spr:nathaz:v:115:y:2023:i:1:d:10.1007_s11069-022-05576-5
    DOI: 10.1007/s11069-022-05576-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05576-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05576-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Tsakiris, 2017. "Drought Risk Assessment and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3083-3095, August.
    2. Margaret Buck Holland & Sierra Zaid Shamer & Pablo Imbach & Juan Carlos Zamora & Claudia Medellin Moreno & Efraín J. Leguía Hidalgo & Camila I. Donatti & M. Ruth Martínez-Rodríguez & Celia A. Harvey, 2017. "Mapping adaptive capacity and smallholder agriculture: applying expert knowledge at the landscape scale," Climatic Change, Springer, vol. 141(1), pages 139-153, March.
    3. Claudia Bouroncle & Pablo Imbach & Beatriz Rodríguez-Sánchez & Claudia Medellín & Armando Martinez-Valle & Peter Läderach, 2017. "Mapping climate change adaptive capacity and vulnerability of smallholder agricultural livelihoods in Central America: ranking and descriptive approaches to support adaptation strategies," Climatic Change, Springer, vol. 141(1), pages 123-137, March.
    4. Janna Frischen & Isabel Meza & Daniel Rupp & Katharina Wietler & Michael Hagenlocher, 2020. "Drought Risk to Agricultural Systems in Zimbabwe: A Spatial Analysis of Hazard, Exposure, and Vulnerability," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    5. Kavina S. Dayal & Ravinesh C. Deo & Armando A. Apan, 2018. "Spatio-temporal drought risk mapping approach and its application in the drought-prone region of south-east Queensland, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 823-847, September.
    6. Piyush Dahal & Nicky Shrestha & Madan Shrestha & Nir Krakauer & Jeeban Panthi & Soni Pradhanang & Ajay Jha & Tarendra Lakhankar, 2016. "Drought risk assessment in central Nepal: temporal and spatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1913-1932, February.
    7. Olga Wilhelmi & Donald Wilhite, 2002. "Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 25(1), pages 37-58, January.
    8. Atifa Asghari & Yuriy Kuleshov & Andrew B. Watkins & Jessica Bhardwaj & Isabella Aitkenhead, 2021. "Improving drought resilience in Northern Murray-Darling Basin farming communities: Is forecast-based financing suitable?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1221-1245, October.
    9. Andrew D. King & Andy J. Pitman & Benjamin J. Henley & Anna M. Ukkola & Josephine R. Brown, 2020. "The role of climate variability in Australian drought," Nature Climate Change, Nature, vol. 10(3), pages 177-179, March.
    10. Hong Wu & Donald Wilhite, 2004. "An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(1), pages 1-21, September.
    11. Piyush Dahal & Nicky Shree Shrestha & Madan Lall Shrestha & Nir Y. Krakauer & Jeeban Panthi & Soni M. Pradhanang & Ajay Jha & Tarendra Lakhankar, 2016. "Drought risk assessment in central Nepal: temporal and spatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1913-1932, February.
    12. Hao Wu & Hui Qian & Jie Chen & Chenchen Huo, 2017. "Assessment of Agricultural Drought Vulnerability in the Guanzhong Plain, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1557-1574, March.
    13. Anshuka Anshuka & Floris F. van Ogtrop & R. Willem Vervoort, 2019. "Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 955-977, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amanda R. Bourne & John Bruce & Meredith M. Guthrie & Li-Ann Koh & Kaylene Parker & Stanley Mastrantonis & Igor Veljanoski, 2023. "Identifying areas of high drought risk in southwest Western Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1361-1385, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabella Aitkenhead & Yuriy Kuleshov & Andrew B. Watkins & Jessica Bhardwaj & Atifa Asghari, 2021. "Assessing agricultural drought management strategies in the Northern Murray–Darling Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1425-1455, November.
    2. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    3. Sergio Vicente-Serrano, 2007. "Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 173-208, January.
    4. Prabhat Khanal & Rajan Dhakal & Tanka Khanal & Deepak Pandey & Naba Raj Devkota & Mette Olaf Nielsen, 2022. "Sustainable Livestock Production in Nepal: A Focus on Animal Nutrition Strategies," Agriculture, MDPI, vol. 12(5), pages 1-20, May.
    5. Yaojie Yue & Jian Li & Xinyue Ye & Zhiqiang Wang & A-Xing Zhu & Jing-ai Wang, 2015. "An EPIC model-based vulnerability assessment of wheat subject to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1629-1652, September.
    6. Saroj Koirala & Yiping Fang & Nirmal Mani Dahal & Chenjia Zhang & Bikram Pandey & Sabita Shrestha, 2020. "Application of Water Poverty Index (WPI) in Spatial Analysis of Water Stress in Koshi River Basin, Nepal," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    7. Divya Saini & Omvir Singh & Tejpal Sharma & Pankaj Bhardwaj, 2022. "Geoinformatics and analytic hierarchy process based drought vulnerability assessment over a dryland ecosystem of north-western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1427-1454, November.
    8. Pawan K. Chaubey & Prashant K. Srivastava & Akhilesh Gupta & R. K. Mall, 2021. "Integrated assessment of extreme events and hydrological responses of Indo-Nepal Gandak River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8643-8668, June.
    9. Neda Khanmohammadi & Hossein Rezaie & Majid Montaseri & Javad Behmanesh, 2017. "The Effect of Temperature Adjustment on Reference Evapotranspiration and Reconnaissance Drought Index (RDI) in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 5001-5017, December.
    10. Ji Eun Kim & Jisoo Yu & Jae-Hee Ryu & Joo-Heon Lee & Tae-Woong Kim, 2021. "Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 707-724, October.
    11. Francesco Cantini & Giulio Castelli & Cristiano Foderi & Adalid Salazar Garcia & Teresa López de Armentia & Elena Bresci & Fabio Salbitano, 2019. "Evidence-Based Integrated Analysis of Environmental Hazards in Southern Bolivia," IJERPH, MDPI, vol. 16(12), pages 1-21, June.
    12. Oshneck Mupepi & Mark Makomborero Matsa, 2022. "Seasonal dynamics of agro-meteorological drought in Mberengwa and Zvishavane districts between 2017 and 2020, Zimbabwe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 157-184, August.
    13. Z. Popova & M. Ivanova & D. Martins & L. Pereira & K. Doneva & V. Alexandrov & M. Kercheva, 2014. "Vulnerability of Bulgarian agriculture to drought and climate variability with focus on rainfed maize systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 865-886, November.
    14. Saowanit Prabnakorn & Shreedhar Maskey & F. X. Suryadi & Charlotte Fraiture, 2019. "Assessment of drought hazard, exposure, vulnerability, and risk for rice cultivation in the Mun River Basin in Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 891-911, June.
    15. Cui, Yi & Jiang, Shangming & Jin, Juliang & Ning, Shaowei & Feng, Ping, 2019. "Quantitative assessment of soybean drought loss sensitivity at different growth stages based on S-shaped damage curve," Agricultural Water Management, Elsevier, vol. 213(C), pages 821-832.
    16. Hongpeng Guo & Jia Chen & Chulin Pan, 2021. "Assessment on Agricultural Drought Vulnerability and Spatial Heterogeneity Study in China," IJERPH, MDPI, vol. 18(9), pages 1-17, April.
    17. P. Vijaya Kumar & Mohammed Osman & P. K. Mishra, 2019. "Development and application of a new drought severity index for categorizing drought-prone areas: a case study of undivided Andhra Pradesh state, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 793-812, June.
    18. Wen Song & Shisong Cao & Mingyi Du & You Mo & Suju Li, 2022. "Investigation of compound drought risk and driving factors in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1365-1391, November.
    19. Jessica Bhardwaj & Yuriy Kuleshov & Andrew B. Watkins & Isabella Aitkenhead & Atifa Asghari, 2021. "Building capacity for a user-centred Integrated Early Warning System (I-EWS) for drought in the Northern Murray-Darling Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 97-122, May.
    20. Sweta Pandey & Swastika Shrestha & Ruchita Bhattarai & Anu Sharma, 2021. "Role of Conservation Agriculture in Sustainability of Rice-Wheat Cropping System In Nepal," Reviews in Food and Agriculture (RFNA), Zibeline International Publishing, vol. 2(2), pages 76-82, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:115:y:2023:i:1:d:10.1007_s11069-022-05576-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.