IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26160-8.html
   My bibliography  Save this article

Self-regeneration of supported transition metals by a high entropy-driven principle

Author

Listed:
  • Shengtai Hou

    (Shanghai Jiao Tong University)

  • Xuefeng Ma

    (Shanghai Jiao Tong University)

  • Yuan Shu

    (Shanghai Jiao Tong University)

  • Jiafeng Bao

    (Shanghai Jiao Tong University)

  • Qiuyue Zhang

    (Xiamen University)

  • Mingshu Chen

    (Xiamen University)

  • Pengfei Zhang

    (Shanghai Jiao Tong University)

  • Sheng Dai

    (Chemical Sciences Division, Oak Ridge National Laboratory)

Abstract

The sintering of Supported Transition Metal Catalysts (STMCs) is a core issue during high temperature catalysis. Perovskite oxides as host matrix for STMCs are proven to be sintering-resistance, leading to a family of self-regenerative materials. However, none other design principles for self-regenerative catalysts were put forward since 2002, which cannot satisfy diverse catalytic processes. Herein, inspired by the principle of high entropy-stabilized structure, a concept whether entropy driving force could promote the self-regeneration process is proposed. To verify it, a high entropy cubic Zr0.5(NiFeCuMnCo)0.5Ox is constructed as a host model, and interestingly in situ reversible exsolution-dissolution of supported metallic species are observed in multi redox cycles. Notably, in situ exsolved transition metals from high entropy Zr0.5(NiFeCuMnCo)0.5Ox support, whose entropic contribution (TΔSconfig = T⋆12.7 J mol−1 K−1) is predominant in ∆G, affording ultrahigh thermal stability in long-term CO2 hydrogenation (400 °C, >500 h). Current theory may inspire more STWCs with excellent sintering-resistance performance.

Suggested Citation

  • Shengtai Hou & Xuefeng Ma & Yuan Shu & Jiafeng Bao & Qiuyue Zhang & Mingshu Chen & Pengfei Zhang & Sheng Dai, 2021. "Self-regeneration of supported transition metals by a high entropy-driven principle," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26160-8
    DOI: 10.1038/s41467-021-26160-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26160-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26160-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon A. Kondrat & Paul J. Smith & Peter P. Wells & Philip A. Chater & James H. Carter & David J. Morgan & Elisabetta M. Fiordaliso & Jakob B. Wagner & Thomas E. Davies & Li Lu & Jonathan K. Bartley &, 2016. "Stable amorphous georgeite as a precursor to a high-activity catalyst," Nature, Nature, vol. 531(7592), pages 83-87, March.
    2. Zhiqi Zhang & Yugang Chen & Liqi Zhou & Chi Chen & Zhen Han & Bingsen Zhang & Qiang Wu & Lijun Yang & Lingyu Du & Yongfeng Bu & Peng Wang & Xizhang Wang & Hui Yang & Zheng Hu, 2019. "The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    3. Y. Nishihata & J. Mizuki & T. Akao & H. Tanaka & M. Uenishi & M. Kimura & T. Okamoto & N. Hamada, 2002. "Self-regeneration of a Pd-perovskite catalyst for automotive emissions control," Nature, Nature, vol. 418(6894), pages 164-167, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuo Liu & Chaochao Dun & Qike Jiang & Zhengxi Xuan & Feipeng Yang & Jinghua Guo & Jeffrey J. Urban & Mark T. Swihart, 2024. "Challenging thermodynamics: combining immiscible elements in a single-phase nano-ceramic," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo-Wen Zhang & Meng-Nan Zhu & Min-Rui Gao & Xiuan Xi & Nanqi Duan & Zhou Chen & Ren-Fei Feng & Hongbo Zeng & Jing-Li Luo, 2022. "Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Roy, Sounak & Hegde, M.S. & Madras, Giridhar, 2009. "Catalysis for NOx abatement," Applied Energy, Elsevier, vol. 86(11), pages 2283-2297, November.
    3. Robayo, Manuel D. & Beaman, Ben & Hughes, Billy & Delose, Brittany & Orlovskaya, Nina & Chen, Ruey-Hung, 2014. "Perovskite catalysts enhanced combustion on porous media," Energy, Elsevier, vol. 76(C), pages 477-486.
    4. Vecino-Mantilla, Sebastian & Zignani, Sabrina C. & Vannier, Rose-Noëlle & Aricò, Antonino S. & Lo Faro, Massimiliano, 2022. "Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas," Renewable Energy, Elsevier, vol. 192(C), pages 784-792.
    5. Liang Shen & Minghui Zhu & Jing Xu, 2021. "Effect of micropores on the structure and CO2 methanation performance of supported Ni/SiO2 catalyst," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1213-1221, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26160-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.