IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09596-x.html
   My bibliography  Save this article

The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring

Author

Listed:
  • Zhiqi Zhang

    (Nanjing University)

  • Yugang Chen

    (Nanjing University)

  • Liqi Zhou

    (Nanjing University)

  • Chi Chen

    (Chinese Academy of Sciences)

  • Zhen Han

    (Nanjing University)

  • Bingsen Zhang

    (Institute of Metal Research, Chinese Academy of Sciences)

  • Qiang Wu

    (Nanjing University)

  • Lijun Yang

    (Nanjing University)

  • Lingyu Du

    (Nanjing University)

  • Yongfeng Bu

    (Nanjing University)

  • Peng Wang

    (Nanjing University
    Nanjing University)

  • Xizhang Wang

    (Nanjing University)

  • Hui Yang

    (Chinese Academy of Sciences)

  • Zheng Hu

    (Nanjing University)

Abstract

Single-site catalysts feature high catalytic activity but their facile construction and durable utilization are highly challenging. Herein, we report a simple impregnation-adsorption method to construct platinum single-site catalysts by synergic micropore trapping and nitrogen anchoring on hierarchical nitrogen-doped carbon nanocages. The optimal catalyst exhibits a record-high electrocatalytic hydrogen evolution performance with low overpotential, high mass activity and long stability, much superior to the platinum-based catalysts to date. Theoretical simulations and experiments reveal that the micropores with edge-nitrogen-dopants favor the formation of isolated platinum atoms by the micropore trapping and nitrogen anchoring of [PtCl6]2-, followed by the spontaneous dechlorination. The platinum-nitrogen bonds are more stable than the platinum-carbon ones in the presence of adsorbed hydrogen atoms, leading to the superior hydrogen evolution stability of platinum single-atoms on nitrogen-doped carbon. This method has been successfully applied to construct the single-site catalysts of other precious metals such as palladium, gold and iridium.

Suggested Citation

  • Zhiqi Zhang & Yugang Chen & Liqi Zhou & Chi Chen & Zhen Han & Bingsen Zhang & Qiang Wu & Lijun Yang & Lingyu Du & Yongfeng Bu & Peng Wang & Xizhang Wang & Hui Yang & Zheng Hu, 2019. "The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09596-x
    DOI: 10.1038/s41467-019-09596-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09596-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09596-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengtai Hou & Xuefeng Ma & Yuan Shu & Jiafeng Bao & Qiuyue Zhang & Mingshu Chen & Pengfei Zhang & Sheng Dai, 2021. "Self-regeneration of supported transition metals by a high entropy-driven principle," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Liang Shen & Minghui Zhu & Jing Xu, 2021. "Effect of micropores on the structure and CO2 methanation performance of supported Ni/SiO2 catalyst," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1213-1221, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09596-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.