IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19924-1.html
   My bibliography  Save this article

Excess forest mortality is consistently linked to drought across Europe

Author

Listed:
  • Cornelius Senf

    (Technical University of Munich)

  • Allan Buras

    (Technical University of Munich)

  • Christian S. Zang

    (Technical University of Munich)

  • Anja Rammig

    (Technical University of Munich)

  • Rupert Seidl

    (Technical University of Munich
    Berchtesgaden National Park)

Abstract

Pulses of tree mortality caused by drought have been reported recently in forests around the globe, but large-scale quantitative evidence is lacking for Europe. Analyzing high-resolution annual satellite-based canopy mortality maps from 1987 to 2016 we here show that excess forest mortality (i.e., canopy mortality exceeding the long-term mortality trend) is significantly related to drought across continental Europe. The relationship between water availability and mortality showed threshold behavior, with excess mortality increasing steeply when the integrated climatic water balance from March to July fell below −1.6 standard deviations of its long-term average. For −3.0 standard deviations the probability of excess canopy mortality was 91.6% (83.8–97.5%). Overall, drought caused approximately 500,000 ha of excess forest mortality between 1987 and 2016 in Europe. We here provide evidence that drought is an important driver of tree mortality at the continental scale, and suggest that a future increase in drought could trigger widespread tree mortality in Europe.

Suggested Citation

  • Cornelius Senf & Allan Buras & Christian S. Zang & Anja Rammig & Rupert Seidl, 2020. "Excess forest mortality is consistently linked to drought across Europe," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19924-1
    DOI: 10.1038/s41467-020-19924-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19924-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19924-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Noë & Karl-Heinz Erb & Sarah Matej & Andreas Magerl & Manan Bhan & Simone Gingrich, 2021. "Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Dennis Metze & Jörg Schnecker & Alberto Canarini & Lucia Fuchslueger & Benjamin J. Koch & Bram W. Stone & Bruce A. Hungate & Bela Hausmann & Hannes Schmidt & Andreas Schaumberger & Michael Bahn & Chri, 2023. "Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    4. Yiping Wu & Xiaowei Yin & Guoyi Zhou & L. Adrian Bruijnzeel & Aiguo Dai & Fan Wang & Pierre Gentine & Guangchuang Zhang & Yanni Song & Decheng Zhou, 2024. "Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Yan Cheng & Stefan Oehmcke & Martin Brandt & Lisa Rosenthal & Adrian Das & Anton Vrieling & Sassan Saatchi & Fabien Wagner & Maurice Mugabowindekwe & Wim Verbruggen & Claus Beier & Stéphanie Horion, 2024. "Scattered tree death contributes to substantial forest loss in California," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Bastit, Félix & Brunette, Marielle & Montagné-Huck, Claire, 2023. "Pests, wind and fire: A multi-hazard risk review for natural disturbances in forests," Ecological Economics, Elsevier, vol. 205(C).
    7. Andreas Floren & Peter J. Horchler & Tobias Müller, 2022. "The Impact of the Neophyte Tree Fraxinus pennsylvanica [Marshall] on Beetle Diversity under Climate Change," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    8. Roitsch, Dennis & Abruscato, Silvia & Lovrić, Marko & Lindner, Marcus & Orazio, Christophe & Winkel, Georg, 2023. "Close-to-nature forestry and intensive forestry – Two response patterns of forestry professionals towards climate change adaptation," Forest Policy and Economics, Elsevier, vol. 154(C).
    9. Monika Vejpustková & Tomáš Čihák & Petr Fišer, 2023. "The increasing drought sensitivity of silver fir (Abies alba Mill.) is evident in the last two decades," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 69(2), pages 67-79.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19924-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.