IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v7y2017i10d10.1038_nclimate3373.html
   My bibliography  Save this article

Urban cross-sector actions for carbon mitigation with local health co-benefits in China

Author

Listed:
  • Anu Ramaswami

    (University of Minnesota, Twin Cities Campus)

  • Kangkang Tong

    (University of Minnesota, Twin Cities Campus)

  • Andrew Fang

    (University of Minnesota, Twin Cities Campus)

  • Raj M. Lal

    (Georgia Institute of Technology)

  • Ajay Singh Nagpure

    (University of Minnesota, Twin Cities Campus)

  • Yang Li

    (Tsinghua University)

  • Huajun Yu

    (Tsinghua University)

  • Daqian Jiang

    (Yale University)

  • Armistead G. Russell

    (Georgia Institute of Technology)

  • Lei Shi

    (Tsinghua University)

  • Marian Chertow

    (Yale University)

  • Yangjun Wang

    (Shanghai University)

  • Shuxiao Wang

    (Tsinghua University)

Abstract

Cities offer unique strategies to reduce fossil fuel use through the exchange of energy and materials across homes, businesses, infrastructure and industries co-located in urban areas. However, the large-scale impact of such strategies has not been quantified. Using new models and data sets representing 637 Chinese cities, we find that such cross-sectoral strategies—enabled by compact urban design and circular economy policies—contribute an additional 15%–36% to national CO2 mitigation, compared to conventional single-sector strategies. As a co-benefit, ∼25,500 to ∼57,500 deaths annually are avoided from air pollution reduction. The benefits are highly variable across cities, ranging from

Suggested Citation

  • Anu Ramaswami & Kangkang Tong & Andrew Fang & Raj M. Lal & Ajay Singh Nagpure & Yang Li & Huajun Yu & Daqian Jiang & Armistead G. Russell & Lei Shi & Marian Chertow & Yangjun Wang & Shuxiao Wang, 2017. "Urban cross-sector actions for carbon mitigation with local health co-benefits in China," Nature Climate Change, Nature, vol. 7(10), pages 736-742, October.
  • Handle: RePEc:nat:natcli:v:7:y:2017:i:10:d:10.1038_nclimate3373
    DOI: 10.1038/nclimate3373
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate3373
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate3373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Lu & Fujii, Minoru & Li, Zhaoling & Dong, Huijuan & Geng, Yong & Liu, Zhe & Fujita, Tsuyoshi & Yu, Xiaoman & Zhang, Yuepeng, 2020. "Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    2. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Jiang, Xueting, 2023. "Rapid decarbonization in the Chinese electric power sector and air pollution reduction Co-benefits in the Post-COP26 Era," Resources Policy, Elsevier, vol. 82(C).
    4. Zheng, Yanting & Yang, Huidan & Huang, Jinyuan & Cui, Qi & Zhan, Jinyan, 2022. "Industrial agglomeration measured by plants’ distance and CO2 emissions: Evidence from 268 Chinese prefecture-level cities," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    5. Wang, Saige & Chen, Bin, 2018. "Three-Tier carbon accounting model for cities," Applied Energy, Elsevier, vol. 229(C), pages 163-175.
    6. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    7. Cai, Bofeng & Lu, Jun & Wang, Jinnan & Dong, Huijuan & Liu, Xiaoman & Chen, Yang & Chen, Zhanming & Cong, Jianhui & Cui, Zhipeng & Dai, Chunyan & Fang, Kai & Feng, Tong & Guo, Jie & Li, Fen & Meng, Fa, 2019. "A benchmark city-level carbon dioxide emission inventory for China in 2005," Applied Energy, Elsevier, vol. 233, pages 659-673.
    8. Kılkış, Şiir, 2019. "Benchmarking the sustainability of urban energy, water and environment systems and envisioning a cross-sectoral scenario for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 529-545.
    9. Liu, Xiaoyu & Duan, Zhiyuan & Shan, Yuli & Duan, Haiyan & Wang, Shuo & Song, Junnian & Wang, Xian'en, 2019. "Low-carbon developments in Northeast China: Evidence from cities," Applied Energy, Elsevier, vol. 236(C), pages 1019-1033.
    10. Zijian Liu & Lian Cai & Yabin Zhang, 2023. "Co-Benefits of China’s Carbon Emissions Trading Scheme: Impact Mechanism and Spillover Effect," IJERPH, MDPI, vol. 20(5), pages 1-13, February.
    11. Chang, Shiyan & Yang, Xi & Zheng, Haotian & Wang, Shuxiao & Zhang, Xiliang, 2020. "Air quality and health co-benefits of China's national emission trading system," Applied Energy, Elsevier, vol. 261(C).
    12. Haotian Zhang & Xiumei Sun & Xueyang Wang & Su Yan, 2022. "Winning the Blue Sky Defense War: Assessing Air Pollution Prevention and Control Action Based on Synthetic Control Method," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    13. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    14. Wang, Yihan & Zhang, Lanxin & Wen, Zongguo & Chen, Chen & Cao, Xin & Doh Dinga, Christian, 2023. "Optimization of the sustainable production pathways under multiple industries and objectives: A study of China's three energy- and emission-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Lin, Huaxing & Zhou, Ziqian & Chen, Shun & Jiang, Ping, 2023. "Clustering and assessing carbon peak statuses of typical cities in underdeveloped Western China," Applied Energy, Elsevier, vol. 329(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:7:y:2017:i:10:d:10.1038_nclimate3373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.