IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v6y2016i3d10.1038_nclimate2825.html
   My bibliography  Save this article

Cooling of US Midwest summer temperature extremes from cropland intensification

Author

Listed:
  • Nathaniel D. Mueller

    (Harvard University
    Harvard University)

  • Ethan E. Butler

    (Harvard University
    University of Minnesota)

  • Karen A. McKinnon

    (Harvard University)

  • Andrew Rhines

    (Harvard University)

  • Martin Tingley

    (The Pennsylvania State University)

  • N. Michele Holbrook

    (Harvard University)

  • Peter Huybers

    (Harvard University)

Abstract

High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we identify centennial trends towards more favourable growing conditions in the US Midwest, including cooler summer temperature extremes and increased precipitation, and investigate the origins of these shifts. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that agricultural intensification increases the potential for evapotranspiration, leading to cooler temperatures and contributing to increased precipitation. The tendency for greater evapotranspiration on hotter days is consistent with our finding that cooling trends are greatest for the highest temperature percentiles. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes.

Suggested Citation

  • Nathaniel D. Mueller & Ethan E. Butler & Karen A. McKinnon & Andrew Rhines & Martin Tingley & N. Michele Holbrook & Peter Huybers, 2016. "Cooling of US Midwest summer temperature extremes from cropland intensification," Nature Climate Change, Nature, vol. 6(3), pages 317-322, March.
  • Handle: RePEc:nat:natcli:v:6:y:2016:i:3:d:10.1038_nclimate2825
    DOI: 10.1038/nclimate2825
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate2825
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate2825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alan F. Hamlet & Kyuhyun Byun & Scott M. Robeson & Melissa Widhalm & Michael Baldwin, 2020. "Impacts of climate change on the state of Indiana: ensemble future projections based on statistical downscaling," Climatic Change, Springer, vol. 163(4), pages 1881-1895, December.
    2. Koffi Djaman & Curtis Owen & Margaret M. West & Samuel Allen & Komlan Koudahe & Murali Darapuneni & Michael O’Neill, 2020. "Relationship between Relative Maturity and Grain Yield of Maize ( Zea mays L.) Hybrids in Northwest New Mexico for the 2003–2019 Period," Agriculture, MDPI, vol. 10(7), pages 1-12, July.
    3. Laura C. Bowling & Keith A. Cherkauer & Charlotte I. Lee & Janna L. Beckerman & Sylvie Brouder & Jonathan R. Buzan & Otto C. Doering & Jeffrey S. Dukes & Paul D. Ebner & Jane R. Frankenberger & Benjam, 2020. "Agricultural impacts of climate change in Indiana and potential adaptations," Climatic Change, Springer, vol. 163(4), pages 2005-2027, December.
    4. Yang, Meijian & Wang, Guiling, 2023. "Heat stress to jeopardize crop production in the US Corn Belt based on downscaled CMIP5 projections," Agricultural Systems, Elsevier, vol. 211(C).
    5. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    6. Kai Kornhuber & Corey Lesk & Carl F. Schleussner & Jonas Jägermeyr & Peter Pfleiderer & Radley M. Horton, 2023. "Risks of synchronized low yields are underestimated in climate and crop model projections," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Daniel Althoff & Lineu Neiva Rodrigues & Demetrius David Silva, 2020. "Impacts of climate change on the evaporation and availability of water in small reservoirs in the Brazilian savannah," Climatic Change, Springer, vol. 159(2), pages 215-232, March.
    8. Magdalena Cornejo & Nicolás Merener & Ezequiel Merovich, 2024. "Extreme Dry Spells and Larger Storms in the U.S. Midwest Raise Crop Prices," Working Papers 303, Red Nacional de Investigadores en Economía (RedNIE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:6:y:2016:i:3:d:10.1038_nclimate2825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.