IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v6y2016i12d10.1038_nclimate3169.html
   My bibliography  Save this article

Urban infrastructure choices structure climate solutions

Author

Listed:
  • Felix Creutzig

    (Mercator Research Institute on Global Commons and Climate Change
    Technische Universität Berlin)

  • Peter Agoston

    (Mercator Research Institute on Global Commons and Climate Change)

  • Jan C. Minx

    (Mercator Research Institute on Global Commons and Climate Change
    Hertie School of Governance)

  • Josep G. Canadell

    (Commonwealth Scientific and Industrial Research Organisation)

  • Robbie M. Andrew

    (Center for International Climate and Environmental Research)

  • Corinne Le Quéré

    (Tyndall Centre for Climate Change Research, University of East Anglia)

  • Glen P. Peters

    (Center for International Climate and Environmental Research)

  • Ayyoob Sharifi

    (National Institute of Environmental Studies)

  • Yoshiki Yamagata

    (National Institute of Environmental Studies)

  • Shobhakar Dhakal

    (Asian Institute of Technology)

Abstract

Cities are becoming increasingly important in combatting climate change, but their overall role in global solution pathways remains unclear. Here we suggest structuring urban climate solutions along the use of existing and newly built infrastructures, providing estimates of the mitigation potential.

Suggested Citation

  • Felix Creutzig & Peter Agoston & Jan C. Minx & Josep G. Canadell & Robbie M. Andrew & Corinne Le Quéré & Glen P. Peters & Ayyoob Sharifi & Yoshiki Yamagata & Shobhakar Dhakal, 2016. "Urban infrastructure choices structure climate solutions," Nature Climate Change, Nature, vol. 6(12), pages 1054-1056, December.
  • Handle: RePEc:nat:natcli:v:6:y:2016:i:12:d:10.1038_nclimate3169
    DOI: 10.1038/nclimate3169
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate3169
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate3169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vivien Fisch-Romito, 2021. "Embodied carbon dioxide emissions to provide high access levels to basic infrastructure around the world," Post-Print hal-03353919, HAL.
    2. Katharina Bohnenberger, 2020. "Money, Vouchers, Public Infrastructures? A Framework for Sustainable Welfare Benefits," Sustainability, MDPI, vol. 12(2), pages 1-30, January.
    3. Hu, Jia-Wei & Javaid, Aneeque & Creutzig, Felix, 2021. "Leverage points for accelerating adoption of shared electric cars: Perceived benefits and environmental impact of NEVs," Energy Policy, Elsevier, vol. 155(C).
    4. André Hartmann & Martin Behnisch & Robert Hecht & Gotthard Meinel, 2024. "Prediction of residential and non-residential building usage in Germany based on a novel nationwide reference data set," Environment and Planning B, , vol. 51(1), pages 216-233, January.
    5. Mutanga, Shingirirai S. & Quitzow, Rainer & Steckel, Jan Christoph, 2018. "Tackling energy, climate and development challenges in Africa," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-14.
    6. Liu, Yinshan & Wang, Yuanfeng & Shi, Chengcheng & Zhang, Weijun & Luo, Wei & Wang, Jingjing & Li, Keping & Yeung, Ngai & Kite, Steve, 2022. "Assessing the CO2 reduction target gap and sustainability for bridges in China by 2040," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. John E. Fernández & Marcela Angel, 2020. "Ecological City-States in an Era of Environmental Disaster: Security, Climate Change and Biodiversity," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    8. Nikola Milojevic-Dupont & Nicolai Hans & Lynn H Kaack & Marius Zumwald & François Andrieux & Daniel de Barros Soares & Steffen Lohrey & Peter-Paul Pichler & Felix Creutzig, 2020. "Learning from urban form to predict building heights," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-22, December.
    9. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    10. Thomas Wiedmann & Guangwu Chen & Anne Owen & Manfred Lenzen & Michael Doust & John Barrett & Kristian Steele, 2021. "Three‐scope carbon emission inventories of global cities," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 735-750, June.
    11. Soomauroo, Zakia & Blechinger, Philipp & Creutzig, Felix, 2023. "Electrifying public transit benefits public finances in small island developing states," Transport Policy, Elsevier, vol. 138(C), pages 45-59.
    12. Yiming Wang & Pengcheng Xiang, 2018. "Urban Sprawl Sustainability of Mountainous Cities in the Context of Climate Change Adaptability Using a Coupled Coordination Model: A Case Study of Chongqing, China," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    13. Yuqiu Jia & Zhenhua Zheng & Qi Zhang & Min Li & Xiaofang Liu, 2020. "Associations of Spatial Aggregation between Neighborhood Facilities and the Population of Age Groups Based on Points-of-Interest Data," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    14. David Frantz & Franz Schug & Dominik Wiedenhofer & André Baumgart & Doris Virág & Sam Cooper & Camila Gómez-Medina & Fabian Lehmann & Thomas Udelhoven & Sebastian Linden & Patrick Hostert & Helmut Hab, 2023. "Unveiling patterns in human dominated landscapes through mapping the mass of US built structures," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Tang, Zhipeng & Yu, Haojie & Zou, Jialing, 2023. "Neighbor impacts of environmental regulation: The case of low-carbon pilot program in China," Energy, Elsevier, vol. 276(C).
    16. Cui, Xuezhu & Zhuang, Caigang & Jiao, Zhenzhi & Tan, Zhangzhi & Li, Shaoying, 2023. "How can urban built environment (BE) influence on-road (OR) carbon emissions? A road segment scale quantification based on massive vehicle trajectory big data," Journal of Transport Geography, Elsevier, vol. 111(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:6:y:2016:i:12:d:10.1038_nclimate3169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.