IDEAS home Printed from https://ideas.repec.org/a/mth/emsd88/v11y2022i4p11-26.html
   My bibliography  Save this article

Possibilities of Using Floating Solar Photovoltaic Panels on Water Reservoirs in the Island of Crete, Greece

Author

Listed:
  • John Vourdoubas

Abstract

Solar photovoltaic electricity generation is important for the energy transition to net zero carbon economy in the coming decades. The aim of the current research is the investigation of the possibilities of installing floating solar photovoltaic panels on the surface of water reservoirs in the island of Crete, Greece. Solar photovoltaic electricity is currently generated in Crete while the solar panels are installed either on the fields or on the rooftop of buildings. Few natural water reservoirs exist in the island while many man-made dams have been constructed to store water and use it for irrigation and drinking purposes. Installation of floating solar panels on the surface of Potamon dam and Aposelemis dam in Crete could generate significant amounts of green electricity. Additionally, it could result in water savings due to lower water evaporation from the dams while more land area will be available for cultivation. Installation of floating solar panels in the two above-mentioned water dams with coverage ratio 10% could generate 252.77 GWhel/year corresponding at 8.3% of the annual electricity generation in Crete while 2.88 mil. m3/year of water could be saved. When the coverage ratio in the two dams is at 30% the annual electricity generation could be at 758.31 GWhel/year corresponding at 24.9% of the annual electricity generation in Crete while 8.64 mil. m3/year of water could be saved. Our results indicate that floating solar panels is a promising alternative technology to ground-mounted solar-PV panels for "solar electricity" generation in Crete.

Suggested Citation

  • John Vourdoubas, 2022. "Possibilities of Using Floating Solar Photovoltaic Panels on Water Reservoirs in the Island of Crete, Greece," Environmental Management and Sustainable Development, Macrothink Institute, vol. 11(4), pages 11-26, December.
  • Handle: RePEc:mth:emsd88:v:11:y:2022:i:4:p:11-26
    as

    Download full text from publisher

    File URL: https://www.macrothink.org/journal/index.php/emsd/article/download/20200/15769
    Download Restriction: no

    File URL: https://www.macrothink.org/journal/index.php/emsd/article/view/20200
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qasem Abdelal, 2021. "Floating PV; an assessment of water quality and evaporation reduction in semi-arid regions," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(3), pages 732-739.
    2. Vladan Durković & Željko Đurišić, 2017. "Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro," Energies, MDPI, vol. 10(10), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    3. Ji, Qianfeng & Li, Kefeng & Wang, Yuanming & Feng, Jingjie & Li, Ran & Liang, Ruifeng, 2022. "Effect of floating photovoltaic system on water temperature of deep reservoir and assessment of its potential benefits, a case on Xiangjiaba Reservoir with hydropower station," Renewable Energy, Elsevier, vol. 195(C), pages 946-956.
    4. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    5. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    6. Timothy P. Neher & Michelle L. Soupir & Rameshwar S. Kanwar, 2021. "Lake Atitlan: A Review of the Food, Energy, and Water Sustainability of a Mountain Lake in Guatemala," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    7. Patrick Moriarty & Damon Honnery, 2022. "Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation?," Energies, MDPI, vol. 15(19), pages 1-16, October.
    8. Kulat, Muhammed Imran & Tosun, Kursad & Karaveli, Abdullah Bugrahan & Yucel, Ismail & Akinoglu, Bulent Gultekin, 2023. "A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey," Renewable Energy, Elsevier, vol. 206(C), pages 694-709.
    9. Maja Muftić Dedović & Samir Avdaković & Adnan Mujezinović & Nedis Dautbašić, 2020. "Integration of PV into the Sarajevo Canton Energy System-Air Quality and Heating Challenges," Energies, MDPI, vol. 14(1), pages 1-28, December.
    10. Adimas Pradityo Sukarso & Kyung Nam Kim, 2020. "Cooling Effect on the Floating Solar PV: Performance and Economic Analysis on the Case of West Java Province in Indonesia," Energies, MDPI, vol. 13(9), pages 1-16, April.
    11. Nobre, Regina & Boulêtreau, Stéphanie & Colas, Fanny & Azemar, Frederic & Tudesque, Loïc & Parthuisot, Nathalie & Favriou, Pierre & Cucherousset, Julien, 2023. "Potential ecological impacts of floating photovoltaics on lake biodiversity and ecosystem functioning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Md. Imamul Islam & Mohd Shawal Jadin & Ahmed Al Mansur & Nor Azwan Mohamed Kamari & Taskin Jamal & Molla Shahadat Hossain Lipu & Mohd Nurulakla Mohd Azlan & Mahidur R. Sarker & A. S. M. Shihavuddin, 2023. "Techno-Economic and Carbon Emission Assessment of a Large-Scale Floating Solar PV System for Sustainable Energy Generation in Support of Malaysia’s Renewable Energy Roadmap," Energies, MDPI, vol. 16(10), pages 1-32, May.
    13. Rok Gomilšek & Lidija Čuček & Marko Homšak & Raymond R. Tan & Zdravko Kravanja, 2020. "Carbon Emissions Constrained Energy Planning for Aluminum Products," Energies, MDPI, vol. 13(11), pages 1-18, June.
    14. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mth:emsd88:v:11:y:2022:i:4:p:11-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Technical Support Office (email available below). General contact details of provider: http://www.macrothink.org/journal/index.php/emsd .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.