IDEAS home Printed from https://ideas.repec.org/a/men/journl/v2y2016i2p122-130.html
   My bibliography  Save this article

Economic Adjustment of Default Probabilities

Author

Listed:
  • Tomáš Vaněk

    (Mendel University in Brno, Czech Republic)

Abstract

This paper proposes a straightforward and intuitive computational mechanism for the economic adjustment of default probabilities, allowing the extension of the original (usually one-year) probability of default estimates for more than one period ahead. The intensity of economic adjustment can be flexibly modified by setting the appropriate weighting parameter. The proposed mechanism is designed to be useful especially in the context of lifetime expected credit losses calculation within the IFRS 9 requirements.

Suggested Citation

  • Tomáš Vaněk, 2016. "Economic Adjustment of Default Probabilities," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 2(2), pages 122-130.
  • Handle: RePEc:men:journl:v:2:y:2016:i:2:p:122-130
    DOI: 10.11118/ejobsat.v2i2.64
    as

    Download full text from publisher

    File URL: http://ejobsat.cz/doi/10.11118/ejobsat.v2i2.64.html
    Download Restriction: free of charge

    File URL: http://ejobsat.cz/doi/10.11118/ejobsat.v2i2.64.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.11118/ejobsat.v2i2.64?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. T Bellotti & J Crook, 2009. "Credit scoring with macroeconomic variables using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1699-1707, December.
    3. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    4. Bangia, Anil & Diebold, Francis X. & Kronimus, Andre & Schagen, Christian & Schuermann, Til, 2002. "Ratings migration and the business cycle, with application to credit portfolio stress testing," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 445-474, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomáš Vaněk & David Hampel, 2017. "The Probability of Default Under IFRS 9: Multi-period Estimation and Macroeconomic Forecast," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(2), pages 759-776.
    2. Naveed Chehrazi & Thomas A. Weber, 2015. "Dynamic Valuation of Delinquent Credit-Card Accounts," Management Science, INFORMS, vol. 61(12), pages 3077-3096, December.
    3. Nusrat Jahan, 2022. "Macroeconomic Determinants of Corporate Credit Spreads: Evidence from Canada," Carleton Economic Papers 22-07, Carleton University, Department of Economics.
    4. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    5. Adrian, Tobias, 2017. "Risk Management and Regulation," CEPR Discussion Papers 12422, C.E.P.R. Discussion Papers.
    6. Edirisinghe, Chanaka & Sawicki, Julia & Zhao, Yonggan & Zhou, Jun, 2022. "Predicting credit rating changes conditional on economic strength," Finance Research Letters, Elsevier, vol. 47(PB).
    7. Liu, Fan & Hua, Zhongsheng & Lim, Andrew, 2015. "Identifying future defaulters: A hierarchical Bayesian method," European Journal of Operational Research, Elsevier, vol. 241(1), pages 202-211.
    8. Krüger, Steffen & Oehme, Toni & Rösch, Daniel & Scheule, Harald, 2018. "A copula sample selection model for predicting multi-year LGDs and Lifetime Expected Losses," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 246-262.
    9. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn C., 2012. "Mixture cure models in credit scoring: If and when borrowers default," European Journal of Operational Research, Elsevier, vol. 218(1), pages 132-139.
    10. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    11. Telg, Sean & Dubinova, Anna & Lucas, Andre, 2023. "Covid-19, credit risk management modeling, and government support," Journal of Banking & Finance, Elsevier, vol. 147(C).
    12. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    13. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Rating Migration Analysis on the Business Cycle," IJFS, MDPI, vol. 2(1), pages 1-22, March.
    14. Malik, Madhur & Thomas, Lyn C., 2012. "Transition matrix models of consumer credit ratings," International Journal of Forecasting, Elsevier, vol. 28(1), pages 261-272.
    15. Alam, Nurul & Gao, Junbin & Jones, Stewart, 2021. "Corporate failure prediction: An evaluation of deep learning vs discrete hazard models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    16. Konrad Banachewicz & André Lucas & Aad van der Vaart, 2008. "Modelling Portfolio Defaults Using Hidden Markov Models with Covariates," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 155-171, March.
    17. Jaehoon Hahn & Ho-Seong Moon, 2016. "Credit Cycle and the Macroeconomy: Empirical Evidence from Korea," Economic Analysis (Quarterly), Economic Research Institute, Bank of Korea, vol. 22(4), pages 76-108, December.
    18. Areski Cousin & Jérôme Lelong & Tom Picard, 2023. "Rating transitions forecasting: a filtering approach," Post-Print hal-03347521, HAL.
    19. repec:syb:wpbsba:03/2013 is not listed on IDEAS
    20. Yi Jiang & Stewart Jones, 2018. "Corporate distress prediction in China: a machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(4), pages 1063-1109, December.
    21. Areski Cousin & J'er^ome Lelong & Tom Picard, 2021. "Rating transitions forecasting: a filtering approach," Papers 2109.10567, arXiv.org, revised Jun 2023.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:men:journl:v:2:y:2016:i:2:p:122-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://edirc.repec.org/data/femencz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.