IDEAS home Printed from https://ideas.repec.org/a/lum/rev3rl/v10y2019i4p44-53.html
   My bibliography  Save this article

Churn Analysis in a Romanian Telecommunications Company

Author

Listed:
  • Andreea Dumitrache

    (PhD Student, Academy of Economic Studies, Bucharest, Romania)

  • Monica Mihaela Maer Matei

    (Conf. Univ. Dr., Academy of Economic Studies, Bucharest, Romania)

Abstract

Telecommunications is one of the sectors where the customer base plays a significant role in maintaining stable revenues, so special attention is paid to prevent their migration to other providers. Over time, businesses in the telecommunications industry have faced multiple threats of financial loss from migrating customers who want to leave their telecom service provider in exchange for other offers from competing companies. An effective prediction model of this action can not only be viewed as an insurance policy, supporting stable revenue, but also provides suggestions for database management so that potential migrant customers can benefit from personalized offers and services, depending on their profile, thus preventing their loss. The aim of this paper is to predict customers who are going to defect in a Romanian mobile telecommunications company. The churn analysis is developed for post-paid customers. We used logistic regression to predict churn and a solution based on smoothed bootstrap technique to correct for the drawbacks of imbalanced classes. In our study this procedure did not significantly improve the performance of the logistic classifier measured by AUC (Area Under the Receiver Operating Characteristic curve). So even after balancing the sample we still obtain a really reduced value of the AUC, making it difficult to correctly predict churn phenomenon on the available data set.

Suggested Citation

  • Andreea Dumitrache & Monica Mihaela Maer Matei, 2019. "Churn Analysis in a Romanian Telecommunications Company," Postmodern Openings, Editura Lumen, Department of Economics, vol. 10(4), pages 44-53, December.
  • Handle: RePEc:lum:rev3rl:v:10:y:2019:i:4:p:44-53
    DOI: https://doi.org/10.18662/po/93
    as

    Download full text from publisher

    File URL: https://lumenpublishing.com/journals/index.php/po/article/view/2298
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.18662/po/93?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bing Zhu & Bart Baesens & Aimée Backiel & Seppe K. L. M. vanden Broucke, 2018. "Benchmarking sampling techniques for imbalance learning in churn prediction," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(1), pages 49-65, January.
    2. Arno de Caigny & Kristof Coussement & Koen W. de Bock, 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," Post-Print hal-01741661, HAL.
    3. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    2. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    3. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    4. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    5. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    6. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    7. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    8. Yuan, Kunpeng & Chi, Guotai & Zhou, Ying & Yin, Hailei, 2022. "A novel two-stage hybrid default prediction model with k-means clustering and support vector domain description," Research in International Business and Finance, Elsevier, vol. 59(C).
    9. Youngkeun Choi & Jae W. Choi, 2023. "Assessing the Predictive Performance of Machine Learning in Direct Marketing Response," International Journal of E-Business Research (IJEBR), IGI Global, vol. 19(1), pages 1-12, January.
    10. Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
    11. Chen, Yan & Zhang, Lei & Zhao, Yulu & Xu, Bing, 2022. "Implementation of penalized survival models in churn prediction of vehicle insurance," Journal of Business Research, Elsevier, vol. 153(C), pages 162-171.
    12. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    13. Amit Neil Ramkissoon & Wayne Goodridge, 2022. "Enhancing the Predictive Performance of Credibility-Based Fake News Detection Using Ensemble Learning," The Review of Socionetwork Strategies, Springer, vol. 16(2), pages 259-289, October.
    14. Li, Mengyu & Vanberkel, Peter & Zhong, Xiang, 2022. "Predicting ambulance offload delay using a hybrid decision tree model," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    15. Narendra Singh & Pushpa Singh & Mukul Gupta, 2020. "An inclusive survey on machine learning for CRM: a paradigm shift," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 447-457, December.
    16. Petra P. Šimović & Claire Y. T. Chen & Edward W. Sun, 2023. "Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 451-485, January.
    17. Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
    18. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    19. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    20. Amin, Adnan & Shah, Babar & Khattak, Asad Masood & Lopes Moreira, Fernando Joaquim & Ali, Gohar & Rocha, Alvaro & Anwar, Sajid, 2019. "Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods," International Journal of Information Management, Elsevier, vol. 46(C), pages 304-319.

    More about this item

    Keywords

    Churn; class imbalance; customer; telecommunications;
    All these keywords.

    JEL classification:

    • A23 - General Economics and Teaching - - Economic Education and Teaching of Economics - - - Graduate

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lum:rev3rl:v:10:y:2019:i:4:p:44-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antonio Sandu (email available below). General contact details of provider: https://lumenpublishing.com/journals/index.php/po/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.