IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v52y2025i3d10.1007_s11116-023-10448-3.html
   My bibliography  Save this article

Examining the nonlinear effects of neighborhood housing + transportation affordability on shared dockless e-scooter trips using machine learning approach

Author

Listed:
  • Wookjae Yang

    (University of Utah)

  • Reid Ewing

    (University of Utah)

Abstract

Despite the growing popularity and benefits of shared dockless e-scooters, there is controversy over whether this is an affordable travel mode for everyone. This paper explores the nonlinear relationship between shared dockless e-scooters and the location affordability of neighborhoods. By analyzing shared dockless e-scooter trip data collected between April 2019 and March 2020 from 1,886 census block groups in Los Angeles, we used a random forest model to investigate this nonlinear relationship. The variable importance plot revealed that economic variables (cost versus income) have greater explanatory power than other variables. In the partial dependency plots, neighborhoods spending more than 35% of their income on housing costs were more inclined to use e-scooters. On the other hand, when transportation represents more than 9% of household income, the e-scooter trip density decreases. Location affordability appears to be serving as a proxy for compactness, with compact areas having higher housing costs and lower transportation costs. The two together are lower in compact areas. The market for e-scooters is thus higher in compact areas where there are many potential users, trips are shorter, and users have more discretionary income due to lower h + t costs. The results of this study highlight the importance of location-specific planning in promoting the effective use of shared dockless e-scooters as a sustainable and active transportation mode beyond simply focusing on costs and incentive programs.

Suggested Citation

  • Wookjae Yang & Reid Ewing, 2025. "Examining the nonlinear effects of neighborhood housing + transportation affordability on shared dockless e-scooter trips using machine learning approach," Transportation, Springer, vol. 52(3), pages 1039-1057, June.
  • Handle: RePEc:kap:transp:v:52:y:2025:i:3:d:10.1007_s11116-023-10448-3
    DOI: 10.1007/s11116-023-10448-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-023-10448-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-023-10448-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Hugo Badia & Erik Jenelius, 2023. "Shared e-scooter micromobility: review of use patterns, perceptions and environmental impacts," Transport Reviews, Taylor & Francis Journals, vol. 43(5), pages 811-837, September.
    3. Ann M. Hartell, 2017. "Evaluating the Concept of Location Affordability: Recent Data on the Relationship Between Transportation, Housing, and Urban Form," Housing Policy Debate, Taylor & Francis Journals, vol. 27(3), pages 356-371, May.
    4. Yang, Hongtai & Zheng, Rong & Li, Xuan & Huo, Jinghai & Yang, Linchuan & Zhu, Tong, 2022. "Nonlinear and threshold effects of the built environment on e-scooter sharing ridership," Journal of Transport Geography, Elsevier, vol. 104(C).
    5. Aarhaug, Jørgen & Fearnley, Nils & Hartveit, Knut Johannes Liland & Johnsson, Espen, 2023. "Price and competition in emerging shared e-scooter markets," Research in Transportation Economics, Elsevier, vol. 98(C).
    6. P. M. Haas & G. L. Newmark & T. R. Morrison, 2016. "Untangling Housing Cost and Transportation Interactions: The Location Affordability Index Model—Version 2 (LAIM2)," Housing Policy Debate, Taylor & Francis Journals, vol. 26(4-5), pages 568-582, September.
    7. Qian, Xiaodong & Jaller, Miguel & Niemeier, Debbie, 2020. "Enhancing equitable service level: Which can address better, dockless or dock-based Bikeshare systems?," Journal of Transport Geography, Elsevier, vol. 86(C).
    8. Huo, Jinghai & Yang, Hongtai & Li, Chaojing & Zheng, Rong & Yang, Linchuan & Wen, Yi, 2021. "Influence of the built environment on E-scooter sharing ridership: A tale of five cities," Journal of Transport Geography, Elsevier, vol. 93(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Scarlett T. & Wang, Lei & Sui, Daniel, 2023. "How the built environment affects E-scooter sharing link flows: A machine learning approach," Journal of Transport Geography, Elsevier, vol. 112(C).
    2. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    3. Shah, Nitesh R. & Ziedan, Abubakr & Brakewood, Candace & Cherry, Christopher R., 2023. "Shared e-scooter service providers with large fleet size have a competitive advantage: Findings from e-scooter demand and supply analysis of Nashville, Tennessee," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    4. Jin, Scarlett T. & Sui, Daniel Z., 2024. "A comparative analysis of the spatial determinants of e-bike and e-scooter sharing link flows," Journal of Transport Geography, Elsevier, vol. 119(C).
    5. Dong, Hongwei, 2021. "Evaluating the impacts of transit-oriented developments (TODs) on household transportation expenditures in California," Journal of Transport Geography, Elsevier, vol. 90(C).
    6. Zhang, Yantang & Hu, Xiaowei & Wang, Hui & An, Shi, 2024. "How does the built environment affect the usage efficiency of dockless-shared bicycle? An exploration of time-varying nonlinear relationships," Journal of Transport Geography, Elsevier, vol. 118(C).
    7. Yang, Hongtai & Zheng, Rong & Li, Xuan & Huo, Jinghai & Yang, Linchuan & Zhu, Tong, 2022. "Nonlinear and threshold effects of the built environment on e-scooter sharing ridership," Journal of Transport Geography, Elsevier, vol. 104(C).
    8. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    9. Yang, Hongtai & Huo, Jinghai & Bao, Yongxing & Li, Xuan & Yang, Linchuan & Cherry, Christopher R., 2021. "Impact of e-scooter sharing on bike sharing in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 23-36.
    10. Jinat Jahan & Shima Hamidi, 2019. "A National Study on Transportation Affordability of HUD Housing Assistance Programs," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    11. Gao, Kun & Yang, Ying & Gil, Jorge & Qu, Xiaobo, 2023. "Data-driven interpretation on interactive and nonlinear effects of the correlated built environment on shared mobility," Journal of Transport Geography, Elsevier, vol. 110(C).
    12. Lei, Jiayou & He, Min & Shi, Zhuangbin & He, Mingwei & Liu, Yang & Qian, Qian & Qian, Huimin, 2024. "How does the built environment affect intermodal transit demand across different spatiotemporal contexts?," Journal of Transport Geography, Elsevier, vol. 121(C).
    13. Meng, Si'an & Brown, Anne, 2021. "Docked vs. dockless equity: Comparing three micromobility service geographies," Journal of Transport Geography, Elsevier, vol. 96(C).
    14. Zhang, Yuting & Nelson, John D. & Mulley, Corinne, 2024. "Learning from the evidence: Insights for regulating e-scooters," Transport Policy, Elsevier, vol. 151(C), pages 63-74.
    15. Coenegrachts, Elnert & Vanelslander, Thierry & Verhetsel, Ann & Beckers, Joris, 2024. "Analyzing shared mobility markets in Europe: A comparative analysis of shared mobility schemes across 311 European cities," Journal of Transport Geography, Elsevier, vol. 118(C).
    16. Theodora Sorkou & Panagiotis G. Tzouras & Katerina Koliou & Lambros Mitropoulos & Christos Karolemeas & Konstantinos Kepaptsoglou, 2022. "An Approach to Model the Willingness to Use of E-Scooter Sharing Services in Different Urban Road Environments," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    17. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    18. Marie Geraldine Herrmann-Lunecke & Cristhian Figueroa-Martínez & Francisca Parra Huerta & Rodrigo Mora, 2022. "The Disabling City: Older Persons Walking in Central Neighbourhoods of Santiago de Chile," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    19. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    20. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:52:y:2025:i:3:d:10.1007_s11116-023-10448-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.