IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v86y2020ics096669232030096x.html
   My bibliography  Save this article

Enhancing equitable service level: Which can address better, dockless or dock-based Bikeshare systems?

Author

Listed:
  • Qian, Xiaodong
  • Jaller, Miguel
  • Niemeier, Debbie

Abstract

Dockless bikeshare systems show potential for replacing traditional dock-based systems, primarily by offering greater flexibility for bike returns. However, many cities in the US currently regulate the maximum number of bikes a dockless system can deploy due to bicycle management issues. Despite inventory management challenges, dockless systems offer two main advantages over dock-based systems: a lower (sometimes zero) membership fee, and being free-range (or, at least free-range within designated service areas). Moreover, these two advantages may help to solve existing access barriers for disadvantaged populations. To date, much of the research on micro-mobility options has focused on addressing equity issues in dock-based systems. We have limited knowledge of the extent to which dockless systems can help mitigate barriers to bikeshare for disadvantaged populations. Using San Francisco as a case study, because the city has both dock-based and dockless systems running concurrently, we quantify bikeshare service levels for communities of concern (CoCs) by analyzing the spatial distribution of service areas, available bikes and bike idle times, trip data, and rebalancing among dock-based and dockless systems. We find that dockless systems can provide greater availability of bikes for CoCs than for other communities, attracting more trip demand in these communities because of a larger service area and frequent bike rebalancing practices. More importantly, we notice that the existence of electric bikes helps mitigate the bikeshare usage gap between CoCs and other tracts. Our results provide policy insights to local municipalities on how to properly regulate dockless bikeshare systems to improve equity.

Suggested Citation

  • Qian, Xiaodong & Jaller, Miguel & Niemeier, Debbie, 2020. "Enhancing equitable service level: Which can address better, dockless or dock-based Bikeshare systems?," Journal of Transport Geography, Elsevier, vol. 86(C).
  • Handle: RePEc:eee:jotrge:v:86:y:2020:i:c:s096669232030096x
    DOI: 10.1016/j.jtrangeo.2020.102784
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096669232030096X
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2016. "Bike-share rebalancing strategies, patterns, and purpose," Journal of Transport Geography, Elsevier, vol. 55(C), pages 22-39.
    2. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    3. Qian, Xiaodong & Jaller, Miguel, 2020. "Bikesharing, equity, and disadvantaged communities: A case study in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 354-371.
    4. Jessica Schoner & David Levinson, 2013. "Which Station? Access Trips and Bike Share Route Choice," Working Papers 000117, University of Minnesota: Nexus Research Group.
    5. Mooney, Stephen J. & Hosford, Kate & Howe, Bill & Yan, An & Winters, Meghan & Bassok, Alon & Hirsch, Jana A., 2019. "Freedom from the station: Spatial equity in access to dockless bike share," Journal of Transport Geography, Elsevier, vol. 74(C), pages 91-96.
    6. Jana A. Hirsch & Joshua Stratton-Rayner & Meghan Winters & John Stehlin & Kate Hosford & Stephen J. Mooney, 2019. "Roadmap for free-floating bikeshare research and practice in North America," Transport Reviews, Taylor & Francis Journals, vol. 39(6), pages 706-732, November.
    7. Qian, Xiaodong & Niemeier, Deb, 2019. "High impact prioritization of bikeshare program investment to improve disadvantaged communities' access to jobs and essential services," Journal of Transport Geography, Elsevier, vol. 76(C), pages 52-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    2. Mohiuddin, Hossain & Fitch-Polse, Dillon T. & Handy, Susan L., 2023. "Does bike-share enhance transport equity? Evidence from the Sacramento, California region," Journal of Transport Geography, Elsevier, vol. 109(C).
    3. Sangwan Lee, 2022. "An In-Depth Understanding of the Residential Property Value Premium of a Bikesharing Service in Portland, Oregon," Land, MDPI, vol. 11(9), pages 1-16, August.
    4. Qian, Xiaodong & Jaller, Miguel & Circella, Giovanni, 2022. "Equitable distribution of bikeshare stations: An optimization approach," Journal of Transport Geography, Elsevier, vol. 98(C).
    5. Sweet, Matthias N. & Scott, Darren M., 2021. "Shared mobility adoption from 2016 to 2018 in the Greater Toronto and Hamilton Area: Demographic or geographic diffusion?," Journal of Transport Geography, Elsevier, vol. 96(C).
    6. Martina Fazio & Nadia Giuffrida & Michela Le Pira & Giuseppe Inturri & Matteo Ignaccolo, 2021. "Planning Suitable Transport Networks for E-Scooters to Foster Micromobility Spreading," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    7. Meng, Si'an & Brown, Anne, 2021. "Docked vs. dockless equity: Comparing three micromobility service geographies," Journal of Transport Geography, Elsevier, vol. 96(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javad J. C. Aman & Myriam Zakhem & Janille Smith-Colin, 2021. "Towards Equity in Micromobility: Spatial Analysis of Access to Bikes and Scooters amongst Disadvantaged Populations," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    2. Chen, Zhiwei & Guo, Yujie & Stuart, Amy L. & Zhang, Yu & Li, Xiaopeng, 2019. "Exploring the equity performance of bike-sharing systems with disaggregated data: A story of southern Tampa," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 529-545.
    3. Chen, Zhiwei & Li, Xiaopeng, 2021. "Unobserved heterogeneity in transportation equity analysis: Evidence from a bike-sharing system in southern Tampa," Journal of Transport Geography, Elsevier, vol. 91(C).
    4. Qian, Xiaodong & Jaller, Miguel & Circella, Giovanni, 2022. "Equitable distribution of bikeshare stations: An optimization approach," Journal of Transport Geography, Elsevier, vol. 98(C).
    5. Cubells, Jerònia & Miralles-Guasch, Carme & Marquet, Oriol, 2023. "Gendered travel behaviour in micromobility? Travel speed and route choice through the lens of intersecting identities," Journal of Transport Geography, Elsevier, vol. 106(C).
    6. Li, Aoyong & Zhao, Pengxiang & Huang, Yizhe & Gao, Kun & Axhausen, Kay W., 2020. "An empirical analysis of dockless bike-sharing utilization and its explanatory factors: Case study from Shanghai, China," Journal of Transport Geography, Elsevier, vol. 88(C).
    7. Meng, Si'an & Brown, Anne, 2021. "Docked vs. dockless equity: Comparing three micromobility service geographies," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Duran-Rodas, David & Villeneuve, Dominic & Pereira, Francisco C. & Wulfhorst, Gebhard, 2020. "How fair is the allocation of bike-sharing infrastructure? Framework for a qualitative and quantitative spatial fairness assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 299-319.
    9. Oviedo, Daniel & Sabogal-Cardona, Orlando, 2022. "Arguments for cycling as a mechanism for sustainable modal shifts in Bogotá," Journal of Transport Geography, Elsevier, vol. 99(C).
    10. Saud, Veronica & Thomopoulos, Nikolas, 2021. "Towards inclusive transport landscapes: Re-visualising a Bicycle Sharing Scheme in Santiago Metropolitan Region," Journal of Transport Geography, Elsevier, vol. 92(C).
    11. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    12. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    13. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    14. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    15. Alexandra König & Laura Gebhardt & Kerstin Stark & Julia Schuppan, 2022. "A Multi-Perspective Assessment of the Introduction of E-Scooter Sharing in Germany," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    16. Nikolaos-Fivos Galatoulas & Konstantinos N. Genikomsakis & Christos S. Ioakimidis, 2020. "Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    17. Yu, Qing & Xie, Yingkun & Li, Weifeng & Zhang, Haoran & Liu, Xiaolei & Shang, Wen-Long & Chen, Jinyu & Yang, Dongyuan & Yan, Jinyue, 2022. "GPS data in urban bicycle-sharing: Dynamic electric fence planning with assessment of resource-saving and potential energy consumption increasement," Applied Energy, Elsevier, vol. 322(C).
    18. Huo, Jinghai & Yang, Hongtai & Li, Chaojing & Zheng, Rong & Yang, Linchuan & Wen, Yi, 2021. "Influence of the built environment on E-scooter sharing ridership: A tale of five cities," Journal of Transport Geography, Elsevier, vol. 93(C).
    19. Mao Ye & Yajing Chen & Guixin Yang & Bo Wang & Qizhou Hu, 2020. "Mixed Logit Models for Travelers’ Mode Shifting Considering Bike-Sharing," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    20. Médard de Chardon, Cyrille, 2019. "The contradictions of bike-share benefits, purposes and outcomes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 401-419.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:86:y:2020:i:c:s096669232030096x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.