IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v49y2022i6d10.1007_s11116-021-10234-z.html
   My bibliography  Save this article

Mobility functional areas and COVID-19 spread

Author

Listed:
  • Stefano Maria Iacus

    (Joint Research Centre)

  • Carlos Santamaria

    (Joint Research Centre)

  • Francesco Sermi

    (Joint Research Centre)

  • Spyridon Spyratos

    (Joint Research Centre)

  • Dario Tarchi

    (Joint Research Centre)

  • Michele Vespe

    (Joint Research Centre)

Abstract

This work introduces a new concept of functional areas called Mobility Functional Areas (MFAs), i.e., the geographic zones highly interconnected according to the analysis of mobile positioning data. The MFAs do not coincide necessarily with administrative borders as they are built observing natural human mobility and, therefore, they can be used to inform, in a bottom-up approach, local transportation, spatial planning, health and economic policies. After presenting the methodology behind the MFAs, this study focuses on the link between the COVID-19 pandemic and the MFAs in Austria. It emerges that the MFAs registered an average number of infections statistically larger than the areas in the rest of the country, suggesting the usefulness of the MFAs in the context of targeted re-escalation policy responses to this health crisis. The MFAs dataset is openly available to other scholars for further analyses.

Suggested Citation

  • Stefano Maria Iacus & Carlos Santamaria & Francesco Sermi & Spyridon Spyratos & Dario Tarchi & Michele Vespe, 2022. "Mobility functional areas and COVID-19 spread," Transportation, Springer, vol. 49(6), pages 1999-2025, December.
  • Handle: RePEc:kap:transp:v:49:y:2022:i:6:d:10.1007_s11116-021-10234-z
    DOI: 10.1007/s11116-021-10234-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-021-10234-z
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-021-10234-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zachary Patterson & Steven Farber, 2015. "Potential Path Areas and Activity Spaces in Application: A Review," Transport Reviews, Taylor & Francis Journals, vol. 35(6), pages 679-700, November.
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    3. CSAJI, Balazs Cs. & BROWET, Arnaud & TRAAG, V.A. & DELVENNE, Jean-Charles, 2013. "Exploring the mobility of mobile phone users," LIDAM Reprints CORE 2508, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Lambert van der Laan, 1998. "Changing Urban Systems: An Empirical Analysis at Two Spatial Levels," Regional Studies, Taylor & Francis Journals, vol. 32(3), pages 235-247.
    5. Csáji, Balázs Cs. & Browet, Arnaud & Traag, V.A. & Delvenne, Jean-Charles & Huens, Etienne & Van Dooren, Paul & Smoreda, Zbigniew & Blondel, Vincent D., 2013. "Exploring the mobility of mobile phone users," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1459-1473.
    6. Jakub Novak & Rein Ahas & Anto Aasa & Siiri Silm, 2013. "Application of mobile phone location data in mapping of commuting patterns and functional regionalization: a pilot study of Estonia," Journal of Maps, Taylor & Francis Journals, vol. 9(1), pages 10-15, March.
    7. Bates, Douglas M. & DebRoy, Saikat, 2004. "Linear mixed models and penalized least squares," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 1-17, October.
    8. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    9. Anne Kaag Andersen, 2002. "Are Commuting Areas Relevant for the Delimitation of Administrative Regions in Denmark?," Regional Studies, Taylor & Francis Journals, vol. 36(8), pages 833-844.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Vespe & Umberto Minora & Stefano Maria Iacus & Spyridon Spyratos & Francesco Sermi & Matteo Fontana & Biagio Ciuffo & Panayotis Christidis, 2021. "Mobility and Economic Impact of COVID-19 Restrictions in Italy using Mobile Network Operator Data," Papers 2106.00460, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steenbruggen, John & Tranos, Emmanouil & Nijkamp, Peter, 2015. "Data from mobile phone operators: A tool for smarter cities?," Telecommunications Policy, Elsevier, vol. 39(3), pages 335-346.
    2. Zheng, Zhong & Zhou, Suhong & Deng, Xingdong, 2021. "Exploring both home-based and work-based jobs-housing balance by distance decay effect," Journal of Transport Geography, Elsevier, vol. 93(C).
    3. A. G. Makhrova & P. L. Kirillov & A. N. Bochkarev, 2017. "Work commuting of the population in the Moscow agglomeration: Estimating commuting flows using mobile operator data," Regional Research of Russia, Springer, vol. 7(1), pages 36-44, January.
    4. Federico Botta & Charo I del Genio, 2017. "Analysis of the communities of an urban mobile phone network," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
    5. Fagiolo, Giorgio & Santoni, Gianluca, 2015. "Human-mobility networks, country income, and labor productivity," Network Science, Cambridge University Press, vol. 3(3), pages 377-407, September.
    6. A. G. Makhrova & R. A. Babkin & P. L. Kirillov & A. V. Starikova & A. V. Sheludkov, 2022. "Temporary Mobility and Population Pulsations in Space of Post-Soviet Russia," Regional Research of Russia, Springer, vol. 12(1), pages 36-50, March.
    7. Sébastien Dujardin & Damien Jacques & Jessica Steele & Catherine Linard, 2020. "Mobile Phone Data for Urban Climate Change Adaptation: Reviewing Applications, Opportunities and Key Challenges," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    8. Vicente Royuela & Javier Romaní & Manuel Artís, 2009. "Using Quality of Life Criteria to Define Urban Areas in Catalonia," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 90(3), pages 419-440, February.
    9. Jamie M. Madden & Simon More & Conor Teljeur & Justin Gleeson & Cathal Walsh & Guy McGrath, 2021. "Population Mobility Trends, Deprivation Index and the Spatio-Temporal Spread of Coronavirus Disease 2019 in Ireland," IJERPH, MDPI, vol. 18(12), pages 1-16, June.
    10. Nielsen, Thomas Alexander Sick & Hovgesen, Henrik Harder, 2008. "Exploratory mapping of commuter flows in England and Wales," Journal of Transport Geography, Elsevier, vol. 16(2), pages 90-99.
    11. Peng Zeng & Ming Wei & Xiaoyang Liu, 2020. "Investigating the Spatiotemporal Dynamics of Urban Vitality Using Bicycle-Sharing Data," Sustainability, MDPI, vol. 12(5), pages 1-14, February.
    12. Mihaela Peres & Helian Xu & Gang Wu, 2016. "Community Evolution in International Migration Top1 Networks," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    13. Xianlong Zhao & Xianze Xu & He Nai & Chen Zhou & Zhiyi Hu & Yi Zhang & Hao Jiang, 2018. "Analysis of behavioral differentiation in smart cities based on mobile users’ usage detail record data," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    14. Albina Mościcka & Krzysztof Pokonieczny & Anna Wilbik & Jakub Wabiński, 2019. "Transport Accessibility of Warsaw: A Case Study," Sustainability, MDPI, vol. 11(19), pages 1-21, October.
    15. Kourtit, Karima & Nijkamp, Peter & Steenbruggen, John, 2017. "The significance of digital data systems for smart city policy," Socio-Economic Planning Sciences, Elsevier, vol. 58(C), pages 13-21.
    16. Yong Gao & Chao Ye & Xiang Zhong & Lun Wu & Yu Liu, 2019. "Extracting Spatial Patterns of Intercity Tourist Movements from Online Travel Blogs," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    17. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    18. Bart Roelofs & Dimitris Ballas & Hinke Haisma & Arjen Edzes, 2022. "Spatial mobility patterns and COVID‐19 incidence: A regional analysis of the second wave in the Netherlands," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(S1), pages 21-40, November.
    19. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    20. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:49:y:2022:i:6:d:10.1007_s11116-021-10234-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.