IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v12y2012i4p635-659.html
   My bibliography  Save this article

A New Formulation Approach for Location-Routing Problems

Author

Listed:
  • Hunkar Toyoglu
  • Oya Karasan
  • Bahar Kara

Abstract

A Location-Routing Problem (LRP) combines two difficult problems, facility location and vehicle routing, and as such it is inherently hard to solve. In this paper, we propose a different formulation approach than the common arc-based product-flow (Arc-BPF) approach in the literature. We associate product amounts to the nodes of the network resulting in a node-based product-flow (Node-BPF) formulation. Our main objective is to develop LRP models with fewer constraints and variables, which can be solved more efficiently. To introduce the proposed approach, we reformulate a complex four-index Arc-BPF LRP model from the literature as a three-index Node-BPF model, which computationally outperforms the former. We then introduce a heuristic method. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Hunkar Toyoglu & Oya Karasan & Bahar Kara, 2012. "A New Formulation Approach for Location-Routing Problems," Networks and Spatial Economics, Springer, vol. 12(4), pages 635-659, December.
  • Handle: RePEc:kap:netspa:v:12:y:2012:i:4:p:635-659
    DOI: 10.1007/s11067-011-9170-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11067-011-9170-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-011-9170-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perl, Jossef & Daskin, Mark S., 1985. "A warehouse location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 19(5), pages 381-396, October.
    2. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    3. Laporte, Gilbert & Nobert, Yves, 1981. "An exact algorithm for minimizing routing and operating costs in depot location," European Journal of Operational Research, Elsevier, vol. 6(2), pages 224-226, February.
    4. Mina, Hokey & Jayaraman, Vaidyanathan & Srivastava, Rajesh, 1998. "Combined location-routing problems: A synthesis and future research directions," European Journal of Operational Research, Elsevier, vol. 108(1), pages 1-15, July.
    5. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    6. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    7. George F. List & Pitu B. Mirchandani & Mark A. Turnquist & Konstantinos G. Zografos, 1991. "Modeling and Analysis for Hazardous Materials Transportation: Risk Analysis, Routing/Scheduling and Facility Location," Transportation Science, INFORMS, vol. 25(2), pages 100-114, May.
    8. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    9. Christian Prins & Caroline Prodhon & Angel Ruiz & Patrick Soriano & Roberto Wolfler Calvo, 2007. "Solving the Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-Granular Tabu Search Heuristic," Transportation Science, INFORMS, vol. 41(4), pages 470-483, November.
    10. Salhi, Said & Rand, Graham K., 1989. "The effect of ignoring routes when locating depots," European Journal of Operational Research, Elsevier, vol. 39(2), pages 150-156, March.
    11. Roberto Baldacci & Aristide Mingozzi & Roberto Wolfler Calvo, 2011. "An Exact Method for the Capacitated Location-Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1284-1296, October.
    12. Barreto, Sergio & Ferreira, Carlos & Paixao, Jose & Santos, Beatriz Sousa, 2007. "Using clustering analysis in a capacitated location-routing problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 968-977, June.
    13. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    14. Hansen, P. H. & Hegedahl, B. & Hjortkjaer, S. & Obel, B., 1994. "A heuristic solution to the warehouse location-routing problem," European Journal of Operational Research, Elsevier, vol. 76(1), pages 111-127, July.
    15. Burcin Bozkaya & Seda Yanik & Selim Balcisoy, 2010. "A GIS-Based Optimization Framework for Competitive Multi-Facility Location-Routing Problem," Networks and Spatial Economics, Springer, vol. 10(3), pages 297-320, September.
    16. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2011. "A branch and cut algorithm for the location-routing problem with simultaneous pickup and delivery," European Journal of Operational Research, Elsevier, vol. 211(2), pages 318-332, June.
    17. Yi, Wei & Ozdamar, Linet, 2007. "A dynamic logistics coordination model for evacuation and support in disaster response activities," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1177-1193, June.
    18. Nambiar, Jay M. & Gelders, Ludo F. & Van Wassenhove, Luk N., 1989. "Plant location and vehicle routing in the Malaysian rubber smallholder sector: A case study," European Journal of Operational Research, Elsevier, vol. 38(1), pages 14-26, January.
    19. Ambrosino, Daniela & Grazia Scutella, Maria, 2005. "Distribution network design: New problems and related models," European Journal of Operational Research, Elsevier, vol. 165(3), pages 610-624, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir Khakbaz & Ali Nookabadi & S. Shetab-bushehri, 2013. "A Model for Locating Park-and-Ride Facilities on Urban Networks Based on Maximizing Flow Capture: A Case Study of Isfahan, Iran," Networks and Spatial Economics, Springer, vol. 13(1), pages 43-66, March.
    2. M. Alinaghian & M. Ghazanfari & N. Norouzi & H. Nouralizadeh, 2017. "A Novel Model for the Time Dependent Competitive Vehicle Routing Problem: Modified Random Topology Particle Swarm Optimization," Networks and Spatial Economics, Springer, vol. 17(4), pages 1185-1211, December.
    3. Francisco Silva & Lucia Gao, 2013. "A Joint Replenishment Inventory-Location Model," Networks and Spatial Economics, Springer, vol. 13(1), pages 107-122, March.
    4. Orenstein, Ido & Raviv, Tal, 2022. "Parcel delivery using the hyperconnected service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    5. Paul Berglund & Changhyun Kwon, 2014. "Robust Facility Location Problem for Hazardous Waste Transportation," Networks and Spatial Economics, Springer, vol. 14(1), pages 91-116, March.
    6. Junlong Zhang & William Lam & Bi Chen, 2013. "A Stochastic Vehicle Routing Problem with Travel Time Uncertainty: Trade-Off Between Cost and Customer Service," Networks and Spatial Economics, Springer, vol. 13(4), pages 471-496, December.
    7. Onur Kaya & Dogus Ozkok, 2020. "A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions," Networks and Spatial Economics, Springer, vol. 20(3), pages 757-783, September.
    8. Surendra Reddy Kancharla & Gitakrishnan Ramadurai, 2019. "Multi-depot Two-Echelon Fuel Minimizing Routing Problem with Heterogeneous Fleets: Model and Heuristic," Networks and Spatial Economics, Springer, vol. 19(3), pages 969-1005, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hunkar Toyoglu & Oya Ekin Karasan & Bahar Yetis Kara, 2011. "Distribution network design on the battlefield," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 188-209, April.
    2. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    3. Michael Schneider & Michael Drexl, 2017. "A survey of the standard location-routing problem," Annals of Operations Research, Springer, vol. 259(1), pages 389-414, December.
    4. Drexl, M. & Schneider, M., 2014. "A Survey of the Standard Location-Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65940, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    6. Daniel Negrotto & Irene Loiseau, 2021. "A Branch & Cut algorithm for the prize-collecting capacitated location routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 34-57, April.
    7. Rieck, Julia & Ehrenberg, Carsten & Zimmermann, Jürgen, 2014. "Many-to-many location-routing with inter-hub transport and multi-commodity pickup-and-delivery," European Journal of Operational Research, Elsevier, vol. 236(3), pages 863-878.
    8. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2011. "A branch and cut algorithm for the location-routing problem with simultaneous pickup and delivery," European Journal of Operational Research, Elsevier, vol. 211(2), pages 318-332, June.
    9. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    10. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    11. Jenn-Rong Lin & Hsien-Chung Lei, 2009. "Distribution systems design with two-level routing considerations," Annals of Operations Research, Springer, vol. 172(1), pages 329-347, November.
    12. Nadizadeh, Ali & Hosseini Nasab, Hasan, 2014. "Solving the dynamic capacitated location-routing problem with fuzzy demands by hybrid heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 238(2), pages 458-470.
    13. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    14. Paolo Gianessi & Laurent Alfandari & Lucas Létocart & Roberto Wolfler Calvo, 2016. "The Multicommodity-Ring Location Routing Problem," Transportation Science, INFORMS, vol. 50(2), pages 541-558, May.
    15. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    16. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    17. Emre Tokgöz & Samir Alwazzi & Theodore Trafalis, 2015. "A heuristic algorithm to solve the single-facility location routing problem on Riemannian surfaces," Computational Management Science, Springer, vol. 12(3), pages 397-415, July.
    18. Nail Tahirov & Najmaddin Akhundov & Simon Emde & Christoph H. Glock, 2025. "Configuration of last-mile distribution networks for an encroaching manufacturer," Annals of Operations Research, Springer, vol. 344(2), pages 679-720, January.
    19. Ting, Ching-Jung & Chen, Chia-Ho, 2013. "A multiple ant colony optimization algorithm for the capacitated location routing problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 34-44.
    20. Menezes, Mozart B.C. & Ruiz-Hernández, Diego & Verter, Vedat, 2016. "A rough-cut approach for evaluating location-routing decisions via approximation algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 89-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:12:y:2012:i:4:p:635-659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.