IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v63y2025i3d10.1007_s11123-024-00750-2.html
   My bibliography  Save this article

Weighted index of graph efficiency improvements for by-production technology and its application to the Indian coal-based thermal power sector

Author

Listed:
  • Sushama Murty

    (Jawaharlal Nehru University (JNU))

  • Resham Nagpal

    (National Institute of Public Finance and Policy (NIPFP))

Abstract

In contrast to conventional output-based efficiency indexes that hold input-levels fixed, a graph index of efficiency-improvements (EIs) is derived for a by-production technology by optimizing a weighted average of EIs in input and good and bad-output directions. Under the by-production approach, EIs in the input directions are non-positively related to EI in the good-output direction and non-negatively related to EI in the bad-output direction. The optimal configurations of EIs balances between the gains for the graph efficiency index from increase in EI in the emission direction and the loss from reduction in EI along the good-output direction when there are EIs in the input directions. A comprehensive classification of possible optimal configurations of EIs is provided. The optimal configuration that materializes depends crucially on the weights given to EIs in the input and output directions. Even with zero weights given to EIs in all the input directions, the optimal configuration can involve EIs in the directions of the emission-causing inputs. The optimal configurations of graph EIs for the plants in the Indian coal-based thermal power sector are studied.

Suggested Citation

  • Sushama Murty & Resham Nagpal, 2025. "Weighted index of graph efficiency improvements for by-production technology and its application to the Indian coal-based thermal power sector," Journal of Productivity Analysis, Springer, vol. 63(3), pages 291-315, June.
  • Handle: RePEc:kap:jproda:v:63:y:2025:i:3:d:10.1007_s11123-024-00750-2
    DOI: 10.1007/s11123-024-00750-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-024-00750-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-024-00750-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emir Malikov & Subal C. Kumbhakar & Efthymios G. Tsionas, 2015. "Bayesian Approach to Disentangling Technical and Environmental Productivity," Econometrics, MDPI, vol. 3(2), pages 1-23, June.
    2. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Sahoo, Biresh K. & Mahanty, Biswajit, 2017. "Rationality of energy efficiency improvement targets under the PAT scheme in India – A case of thermal power plants," Energy Economics, Elsevier, vol. 66(C), pages 279-289.
    3. Sueyoshi, Toshiyuki & Goto, Mika, 2010. "Should the US clean air act include CO2 emission control?: Examination by data envelopment analysis," Energy Policy, Elsevier, vol. 38(10), pages 5902-5911, October.
    4. Coggins, Jay S. & Swinton, John R., 1996. "The Price of Pollution: A Dual Approach to Valuing SO2Allowances," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 58-72, January.
    5. Sushama Murty & R. Robert Russell, 2018. "Modeling emission-generating technologies: reconciliation of axiomatic and by-production approaches," Empirical Economics, Springer, vol. 54(1), pages 7-30, February.
    6. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    7. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    8. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    9. Sushama Murty, 2015. "On the properties of an emission-generating technology and its parametric representation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 243-282, October.
    10. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "DEA environmental assessment of coal fired power plants: Methodological comparison between radial and non-radial models," Energy Economics, Elsevier, vol. 34(6), pages 1854-1863.
    11. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    12. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    13. Stijn Reinhard & C.A. Knox Lovell & Geert Thijssen, 1999. "Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 44-60.
    14. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel J. Henderson, 2025. "In Memoriam: R. Robert Russell, 1938–2023," Journal of Productivity Analysis, Springer, vol. 63(3), pages 241-243, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sushama Murty & Resham Nagpal, "undated". "Weighted index of graph efficiency improvements for a by-production technology and its application to Indian coal-based thermal power sector," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-08, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    2. Dakpo, K Hervé, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers 245191, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    3. Sushama Murty & R. Robert Russell, "undated". "Bad Outputs," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 17-06, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    4. K Hervé Dakpo, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers SMART 16-06, INRAE UMR SMART.
    5. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    6. Subhash C. Ray & Shilpa Sethia, 2024. "A state-level resource allocation model for emission reduction and efficiency improvement in thermal power plants," Indian Economic Review, Springer, vol. 59(1), pages 205-257, October.
    7. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    8. Sushama Murty & Resham Nagpal, "undated". "Measuring output-based technical efficiency of Indian coal-based thermal power plants: A by-production approach," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-07, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    9. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    10. Finn R. Førsund, 2018. "Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance," Empirical Economics, Springer, vol. 54(1), pages 67-99, February.
    11. Sushama Murty, 2015. "On the properties of an emission-generating technology and its parametric representation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 243-282, October.
    12. Subhash C. Ray & Shilpa Sethia, 2023. "A State-Level Resource Allocation Model for Emission Reduction and Efficiency Improvement in Thermal Power Plants," Working papers 2023-08, University of Connecticut, Department of Economics.
    13. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    14. Emir Malikov & Raushan Bokusheva & Subal C. Kumbhakar, 2018. "A hedonic-output-index-based approach to modeling polluting technologies," Empirical Economics, Springer, vol. 54(1), pages 287-308, February.
    15. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    16. Magambo, Isaiah Hubert & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Dynamic Technical and Environmental Efficiency Performance of Large Gold Mines in Developing Countries," EconStor Preprints 235859, ZBW - Leibniz Information Centre for Economics.
    17. Tateishi, Henrique Ryosuke & Bragagnolo, Cassiano & de Faria, Rosane Nunes, 2020. "Economic and environmental efficiencies of greenhouse gases’ emissions under institutional influence," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    18. Bokusheva, Raushan & Kumbhakar, Subal C., 2014. "A Distance Function Model with Good and Bad Outputs," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182765, European Association of Agricultural Economists.
    19. Dakpo, K & Jeanneaux, Philippe & Latruffee, Laure, 2015. "Empirical comparison of pollution generating technologies in nonparametric modelling: The case of greenhouse gas emissions in French sheep meat farming," 2015 Conference, August 9-14, 2015, Milan, Italy 211557, International Association of Agricultural Economists.
    20. Sushama Murty & Resham Nagpal, "undated". "Choice of models for emission-generating technologies and designing technical efficiency improvements," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 19-01, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.

    More about this item

    Keywords

    Emission-generating technologies; By-production technologies; Output-based efficiency indexes; Weighted graph efficiency indexes; Efficiency improvements;
    All these keywords.

    JEL classification:

    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:63:y:2025:i:3:d:10.1007_s11123-024-00750-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.