IDEAS home Printed from
   My bibliography  Save this article

Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm


  • Xiaolan Wu


  • Tony Grubesic



No abstract is available for this item.

Suggested Citation

  • Xiaolan Wu & Tony Grubesic, 2010. "Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm," Journal of Geographical Systems, Springer, vol. 12(4), pages 409-433, December.
  • Handle: RePEc:kap:jgeosy:v:12:y:2010:i:4:p:409-433
    DOI: 10.1007/s10109-010-0107-7

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ningchuan Xiao & David A Bennett & Marc P Armstrong, 2002. "Using evolutionary algorithms to generate alternatives for multiobjective site-search problems," Environment and Planning A, Pion Ltd, London, vol. 34(4), pages 639-656, April.
    2. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    3. M. Ruth & K. Donaghy & P. Kirshen, 2006. "Introduction," Chapters,in: Regional Climate Change and Variability, chapter 1 Edward Elgar Publishing.
    4. Duczmal, Luiz & Cancado, Andre L.F. & Takahashi, Ricardo H.C. & Bessegato, Lupercio F., 2007. "A genetic algorithm for irregularly shaped spatial scan statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 43-52, September.
    5. Luc Anselin, 2000. "Geographical Spillovers and University Research: A Spatial EconometricPerspective," Growth and Change, Wiley Blackwell, vol. 31(4), pages 501-515.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Hot-spots; Crime; Genetic algorithms; Epidemiology; Irregular clusters; Geographic information systems (GIS); Spatial analysis; C49; C61;

    JEL classification:

    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:12:y:2010:i:4:p:409-433. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.