IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v11y2008i4p399-406.html
   My bibliography  Save this article

Keeping the noise down: common random numbers for disease simulation modeling

Author

Listed:
  • Natasha Stout
  • Sue Goldie

Abstract

No abstract is available for this item.

Suggested Citation

  • Natasha Stout & Sue Goldie, 2008. "Keeping the noise down: common random numbers for disease simulation modeling," Health Care Management Science, Springer, vol. 11(4), pages 399-406, December.
  • Handle: RePEc:kap:hcarem:v:11:y:2008:i:4:p:399-406
    DOI: 10.1007/s10729-008-9067-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-008-9067-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-008-9067-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre L'Ecuyer & Richard Simard & E. Jack Chen & W. David Kelton, 2002. "An Object-Oriented Random-Number Package with Many Long Streams and Substreams," Operations Research, INFORMS, vol. 50(6), pages 1073-1075, December.
    2. R Davies & R J Brooks, 2007. "Stream correlations in multiple recursive and congruential generators," Journal of Simulation, Taylor & Francis Journals, vol. 1(2), pages 131-135, May.
    3. Oguzhan Alagoz & Cindy L. Bryce & Steven Shechter & Andrew Schaefer & Chung-Chou H. Chang & Derek C. Angus & Mark S. Roberts, 2005. "Incorporating Biological Natural History in Simulation Models: Empirical Estimates of the Progression of End-Stage Liver Disease," Medical Decision Making, , vol. 25(6), pages 620-632, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ian Philips & Graham Clarke & David Watling, 2017. "A Fine Grained Hybrid Spatial Microsimulation Technique for Generating Detailed Synthetic Individuals from Multiple Data Sources: An Application To Walking And Cycling," International Journal of Microsimulation, International Microsimulation Association, vol. 10(1), pages 167-200.
    2. repec:ijm:journl:v109:y:2017:i:1:p:167-200 is not listed on IDEAS
    3. Chih, Mingchang, 2023. "Stochastic stability analysis of particle swarm optimization with pseudo random number assignment strategy," European Journal of Operational Research, Elsevier, vol. 305(2), pages 562-593.
    4. Ankur Pandya & Stephen Sy & Sylvia Cho & Sartaj Alam & Milton C. Weinstein & Thomas A. Gaziano, 2017. "Validation of a Cardiovascular Disease Policy Microsimulation Model Using Both Survival and Receiver Operating Characteristic Curves," Medical Decision Making, , vol. 37(7), pages 802-814, October.
    5. Uwe Siebert & Oguzhan Alagoz & Ahmed M. Bayoumi & Beate Jahn & Douglas K. Owens & David J. Cohen & Karen M. Kuntz, 2012. "State-Transition Modeling," Medical Decision Making, , vol. 32(5), pages 690-700, September.
    6. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    7. Jagpreet Chhatwal & Tianhua He, 2015. "Economic Evaluations with Agent-Based Modelling: An Introduction," PharmacoEconomics, Springer, vol. 33(5), pages 423-433, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Determining the Acceptance of Cadaveric Livers Using an Implicit Model of the Waiting List," Operations Research, INFORMS, vol. 55(1), pages 24-36, February.
    2. Bivand, Roger, 2010. "Exploiting Parallelization in Spatial Statistics: an Applied Survey using R," Discussion Paper Series in Economics 25/2010, Norwegian School of Economics, Department of Economics.
    3. Pierre L'Ecuyer & Richard Simard, 2014. "On the Lattice Structure of a Special Class of Multiple Recursive Random Number Generators," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 449-460, August.
    4. Gilles Pag`es & Benedikt Wilbertz, 2011. "GPGPUs in computational finance: Massive parallel computing for American style options," Papers 1101.3228, arXiv.org.
    5. Mehmet Tolga Cezik & Pierre L'Ecuyer, 2008. "Staffing Multiskill Call Centers via Linear Programming and Simulation," Management Science, INFORMS, vol. 54(2), pages 310-323, February.
    6. Radu Herbei & L. Mark Berliner, 2014. "Estimating Ocean Circulation: An MCMC Approach With Approximated Likelihoods via the Bernoulli Factory," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 944-954, September.
    7. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    8. Iago Medeiros & Lucas Pacheco & Denis Rosário & Cristiano Both & Jéferson Nobre & Eduardo Cerqueira & Lisandro Granville, 2021. "Quality of experience and quality of service‐aware handover for video transmission in heterogeneous networks," International Journal of Network Management, John Wiley & Sons, vol. 31(5), September.
    9. Kampf, M. & Kochel, P., 2006. "Simulation-based sequencing and lot size optimisation for a production-and-inventory system with multiple items," International Journal of Production Economics, Elsevier, vol. 104(1), pages 191-200, November.
    10. Oguzhan Alagoz & Heather Hsu & Andrew J. Schaefer & Mark S. Roberts, 2010. "Markov Decision Processes: A Tool for Sequential Decision Making under Uncertainty," Medical Decision Making, , vol. 30(4), pages 474-483, July.
    11. Zlatana Nenova & Jennifer Shang, 2022. "Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 259-280, January.
    12. Hiroshi Haramoto & Makoto Matsumoto & Takuji Nishimura & François Panneton & Pierre L'Ecuyer, 2008. "Efficient Jump Ahead for (F-openface) 2 -Linear Random Number Generators," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 385-390, August.
    13. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Oguzhan Alagoz & Mark S. Roberts, 2008. "Estimating the Patient's Price of Privacy in Liver Transplantation," Operations Research, INFORMS, vol. 56(6), pages 1393-1410, December.
    14. Tang, Hui-Chin, 2005. "Reverse multiple recursive random number generators," European Journal of Operational Research, Elsevier, vol. 164(2), pages 402-405, July.
    15. Karen T. Hicklin & Julie S. Ivy & James R. Wilson & Fay Cobb Payton & Meera Viswanathan & Evan R. Myers, 2019. "Simulation model of the relationship between cesarean section rates and labor duration," Health Care Management Science, Springer, vol. 22(4), pages 635-657, December.
    16. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    17. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    18. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.
    19. Arthur Hau, 2011. "Pricing of Loan Commitments for Facilitating Stochastic Liquidity Needs," Journal of Financial Services Research, Springer;Western Finance Association, vol. 39(1), pages 71-94, April.
    20. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer & Mark S. Roberts, 2008. "The Optimal Time to Initiate HIV Therapy Under Ordered Health States," Operations Research, INFORMS, vol. 56(1), pages 20-33, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:11:y:2008:i:4:p:399-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.