IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i4d10.1007_s10614-024-10623-3.html
   My bibliography  Save this article

On a Black–Scholes American Call Option Model

Author

Listed:
  • Morteza Garshasbi

    (Iran University of Science and Technology)

  • Shadi Malek Bagomghaleh

    (Iran University of Science and Technology)

Abstract

This study focuses on the Black–Scholes American call option model as a moving boundary problem. Using a front-fixing approach, the model is derived as a fixed domain nonlinear parabolic problem, and the uniqueness of both the call option price and critical stock price is established. An iterative approach is established to numerically solve the problem, and the convergence of the iterative method is proved. For computational implementation, a finite difference scheme in conjunction with a second-order Runge–Kutta method is conducted. Finally, the numerical results for two test problems are reported in order to confirm our theoretical achievements.

Suggested Citation

  • Morteza Garshasbi & Shadi Malek Bagomghaleh, 2025. "On a Black–Scholes American Call Option Model," Computational Economics, Springer;Society for Computational Economics, vol. 65(4), pages 2179-2204, April.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10623-3
    DOI: 10.1007/s10614-024-10623-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10623-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10623-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dabadghao, Shaunak S. & Chockalingam, Arun & Soltani, Taimaz & Fransoo, Jan, 2021. "Valuing Switching options with the moving-boundary method," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    2. Dabadghao, Shaunak S. & Chockalingam, Arun & Soltani, Taimaz & Fransoo, Jan C., 2021. "Valuing switching options with the moving-boundary method," Other publications TiSEM 45fe7e78-129f-4d41-ac2f-5, Tilburg University, School of Economics and Management.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Kumar, Sunil & Kumar, Ranbir & Cattani, Carlo & Samet, Bessem, 2020. "Chaotic behaviour of fractional predator-prey dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    5. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    6. Matthias Ehrhardt & Ronald E. Mickens, 2008. "A Fast, Stable And Accurate Numerical Method For The Black–Scholes Equation Of American Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 471-501.
    7. David S. Bunch & Herb Johnson, 2000. "The American Put Option and Its Critical Stock Price," Journal of Finance, American Finance Association, vol. 55(5), pages 2333-2356, October.
    8. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    9. Jin E. Zhang, 2003. "Pricing continuously sampled Asian options with perturbation method," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(6), pages 535-560, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    2. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    3. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
    4. Leunglung Chan & Song-Ping Zhu, 2021. "An Analytic Approach for Pricing American Options with Regime Switching," JRFM, MDPI, vol. 14(5), pages 1-20, April.
    5. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    6. Yishen Li & Jin Zhang, 2004. "Option pricing with Weyl-Titchmarsh theory," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 457-464.
    7. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    8. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    9. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    10. Chung, Y. Peter & Johnson, Herb & Polimenis, Vassilis, 2011. "The critical stock price for the American put option," Finance Research Letters, Elsevier, vol. 8(1), pages 8-14, March.
    11. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175.
    12. Alghalith, Moawia, 2020. "Pricing the American options: A closed-form, simple formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    13. Riccardo Fazio, 2015. "A Posteriori Error Estimator for a Front-Fixing Finite Difference Scheme for American Options," Papers 1504.04594, arXiv.org.
    14. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    15. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    16. Liu, Yanchu & Cui, Zhenyu & Zhang, Ning, 2016. "Integral representation of vega for American put options," Finance Research Letters, Elsevier, vol. 19(C), pages 204-208.
    17. Raquel M. Gaspar & Sara D. Lopes & Bernardo Sequeira, 2020. "Neural Network Pricing of American Put Options," Risks, MDPI, vol. 8(3), pages 1-24, July.
    18. Leunglung Chan & Song-Ping Zhu, 2014. "An exact and explicit formula for pricing lookback options with regime switching," Papers 1407.4864, arXiv.org.
    19. Cristina Viegas & José Azevedo-Pereira, 2020. "A Quasi-Closed-Form Solution for the Valuation of American Put Options," IJFS, MDPI, vol. 8(4), pages 1-16, October.
    20. Leunglung Chan & Song-Ping Zhu, 2014. "An exact and explicit formula for pricing Asian options with regime switching," Papers 1407.5091, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10623-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.