IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v62y2023i4d10.1007_s10614-022-10303-0.html
   My bibliography  Save this article

Using Quadratic Interpolated Beetle Antennae Search for Higher Dimensional Portfolio Selection Under Cardinality Constraints

Author

Listed:
  • Ameer Tamoor Khan

    (The Hong Kong Polytechnic University)

  • Xinwei Cao

    (Jiangnan University)

  • Shuai Li

    (Swansea University)

Abstract

In this paper, we presented a Quadratic Interpolated Beetle Antennae Search (QIBAS), a variant of the Beetle Antennae Search (BAS) algorithm to solve the higher dimensional portfolio selection problem. The computational efficiency of BAS and its probabilistic global convergence made it viable to solve real-world optimization-based problems. Despite its numerous application, it is less accurate, not scalable, and its performance deteriorates as the dimension of the problem increases. To overcome this, QIBAS integrates BAS with the robust approximation of quadratic interpolation. We employed QIBAS to a well-known finance problem known as Portfolio Selection as a testbed. Traditionally, the portfolio problem is modeled as a convex optimization problem, which is efficient to solve but inaccurate. The cardinality constrained model with higher dimensional stock data includes stringent real-world constraints. It is more accurate but computationally challenging and not tractable, making it a perfect candidate to test QIBAS. The primary goal is to minimize the risk and maximize the profit while selecting the portfolio. We included up to 250 companies in simulation and compared the results with BAS and two state-of-the-art swarm metaheuristic algorithms, i.e., Particle Swarm Optimization and Genetic algorithm. The results showed the promising performance of QIBAS in comparison with other algorithms.

Suggested Citation

  • Ameer Tamoor Khan & Xinwei Cao & Shuai Li, 2023. "Using Quadratic Interpolated Beetle Antennae Search for Higher Dimensional Portfolio Selection Under Cardinality Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1413-1435, December.
  • Handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10303-0
    DOI: 10.1007/s10614-022-10303-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10303-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10303-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    2. Elton, Edwin J. & Gruber, Martin J. & Padberg, Manfred W., 1977. "Simple Rules for Optimal Portfolio Selection: The Multi Group Case," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(3), pages 329-345, September.
    3. Chao Gong & Chunhui Xu & Ji Wang, 2018. "An Efficient Adaptive Real Coded Genetic Algorithm to Solve the Portfolio Choice Problem Under Cumulative Prospect Theory," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 227-252, June.
    4. Rula Hani Salman AlHalaseh & Aminul Islam & Rosni Bakar, 2019. "An Extended Stochastic Goal Mixed Integer Programming for Optimal Portfolio Selection in the Amman Stock Exchange," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 10(2), pages 36-51, April.
    5. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2021. "Factor Models for Portfolio Selection in Large Dimensions: The Good, the Better and the Ugly [Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 236-257.
    6. Xingyu Yang & Jin’an He & Hong Lin & Yong Zhang, 2020. "Boosting Exponential Gradient Strategy for Online Portfolio Selection: An Aggregating Experts’ Advice Method," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 231-251, January.
    7. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    8. Yong-Jun Liu & Wei-Guo Zhang, 2019. "Possibilistic Moment Models for Multi-period Portfolio Selection with Fuzzy Returns," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1657-1686, April.
    9. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    10. Yi-Ting Chen & Edward W. Sun & Min-Teh Yu, 2018. "Risk Assessment with Wavelet Feature Engineering for High-Frequency Portfolio Trading," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 653-684, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca De Nard & Robert F. Engle & Bryan Kelly, 2024. "Factor-Mimicking Portfolios for Climate Risk," Financial Analysts Journal, Taylor & Francis Journals, vol. 80(3), pages 37-58, July.
    2. Liu, Cheng & Wang, Moming & Xia, Ningning, 2022. "Design-free estimation of integrated covariance matrices for high-frequency data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Lassance, Nathan & Vrins, Frédéric, 2023. "Portfolio selection: A target-distribution approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 302-314.
    4. Hafner, Christian M. & Wang, Linqi, 2024. "Dynamic portfolio selection with sector-specific regularization," Econometrics and Statistics, Elsevier, vol. 32(C), pages 17-33.
    5. Christian Bongiorno & Damien Challet, 2024. "Covariance matrix filtering and portfolio optimisation: the average oracle vs non-linear shrinkage and all the variants of DCC-NLS," Quantitative Finance, Taylor & Francis Journals, vol. 24(9), pages 1227-1234, September.
    6. Jean-David Fermanian & Benjamin Poignard & Panos Xidonas, 2025. "Model-based vs. agnostic methods for the prediction of time-varying covariance matrices," Annals of Operations Research, Springer, vol. 346(1), pages 511-548, March.
    7. Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org, revised Jul 2024.
    8. De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
    9. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    10. Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
    11. De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
    12. Akhilesh KUMAR & Mohammad SHAHID, 2021. "Portfolio selection problem: Issues, challenges and future prospectus," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(4(629), W), pages 71-90, Winter.
    13. Raymond Kan & Xiaolu Wang, 2024. "Optimal Portfolio Choice with Unknown Benchmark Efficiency," Management Science, INFORMS, vol. 70(9), pages 6117-6138, September.
    14. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    15. Ahmed, Shamim & Bu, Ziwen & Symeonidis, Lazaros & Tsvetanov, Daniel, 2023. "Which factor model? A systematic return covariation perspective," Journal of International Money and Finance, Elsevier, vol. 136(C).
    16. Gianluca De Nard & Damjan Kostovic, 2025. "AI shrinkage: a data-driven approach for risk-optimized portfolios," ECON - Working Papers 470, Department of Economics - University of Zurich.
    17. Conlon, Thomas & Cotter, John & Kynigakis, Iason, 2025. "Asset allocation with factor-based covariance matrices," European Journal of Operational Research, Elsevier, vol. 325(1), pages 189-203.
    18. Longsheng Cheng & Mahboubeh Shadabfar & Arash Sioofy Khoojine, 2023. "A State-of-the-Art Review of Probabilistic Portfolio Management for Future Stock Markets," Mathematics, MDPI, vol. 11(5), pages 1-34, February.
    19. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    20. Wu, Yunlin & Huang, Lei & Jiang, Hui, 2023. "Optimization of large portfolio allocation for new-energy stocks: Evidence from China," Energy, Elsevier, vol. 285(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10303-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.