IDEAS home Printed from
   My bibliography  Save this article

Comparison of MCMC Methods for Estimating Stochastic Volatility Models


  • Manabu Asai



This article investigates performances of MCMC methods to estimate stochastic volatility models on simulated and real data. There are two efficient MCMC methods to generate latent volatilities from their full conditional distribution. One is the mixture sampler and the other is the multi-move sampler. There is another efficient method for latent volatilities and all parameters called the integration sampler, which is based on the mixture sampler. This article proposes an alternative method based on the multi-move sampler and finds evidence that it is the best method among them. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Manabu Asai, 2005. "Comparison of MCMC Methods for Estimating Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 25(3), pages 281-301, June.
  • Handle: RePEc:kap:compec:v:25:y:2005:i:3:p:281-301 DOI: 10.1007/s10614-005-2974-4

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    2. Renate Meyer & David A. Fournier & Andreas Berg, 2003. "Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 408-420, December.
    3. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    4. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    5. A. W. Coats, 1996. "Introduction," History of Political Economy, Duke University Press, vol. 28(5), pages 3-11, Supplemen.
    6. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    7. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Manabu Asai & Michael McAleer, 2011. "Alternative Asymmetric Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 30(5), pages 548-564, October.
    2. Roberto Leon-Gonzalez, 2014. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," Working Paper series 19_14, Rimini Centre for Economic Analysis.
    3. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    4. Didit Nugroho & Takayuki Morimoto, 2015. "Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods," Computational Statistics, Springer, vol. 30(2), pages 491-516, June.
    5. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:25:y:2005:i:3:p:281-301. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.