IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v066i03.html
   My bibliography  Save this article

Parametric and Nonparametric Sequential Change Detection in R: The cpm Package

Author

Listed:
  • Ross, Gordon J.

Abstract

The change point model framework introduced in Hawkins, Qiu, and Kang (2003) and Hawkins and Zamba (2005a) provides an effective and computationally efficient method for detecting multiple mean or variance change points in sequences of Gaussian random variables, when no prior information is available regarding the parameters of the distribution in the various segments. It has since been extended in various ways by Hawkins and Deng (2010), Ross, Tasoulis, and Adams (2011), Ross and Adams (2012) to allow for fully nonparametric change detection in non-Gaussian sequences, when no knowledge is available regarding even the distributional form of the sequence. Another extension comes from Ross and Adams (2011) and Ross (2014) which allows change detection in streams of Bernoulli and Exponential random variables respectively, again when the values of the parameters are unknown. This paper describes the R package cpm, which provides a fast implementation of all the above change point models in both batch (Phase I) and sequential (Phase II) settings, where the sequences may contain either a single or multiple change points.

Suggested Citation

  • Ross, Gordon J., 2015. "Parametric and Nonparametric Sequential Change Detection in R: The cpm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i03).
  • Handle: RePEc:jss:jstsof:v:066:i03
    DOI: http://hdl.handle.net/10.18637/jss.v066.i03
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v066i03/v66i03.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v066i03/cpm_2.2.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v066i03/v66i03.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v066.i03?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    2. Killick, Rebecca & Eckley, Idris A., 2014. "changepoint: An R Package for Changepoint Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i03).
    3. Hawkins, Douglas M., 2001. "Fitting multiple change-point models to data," Computational Statistics & Data Analysis, Elsevier, vol. 37(3), pages 323-341, September.
    4. Erdman, Chandra & Emerson, John W., 2007. "bcp: An R Package for Performing a Bayesian Analysis of Change Point Problems," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:osf:osfxxx:fzqxv_v1 is not listed on IDEAS
    2. Lindeløv, Jonas Kristoffer, 2020. "mcp: An R Package for Regression With Multiple Change Points," OSF Preprints fzqxv, Center for Open Science.
    3. Nora M. Villanueva & Marta Sestelo & Miguel M. Fonseca & Javier Roca-Pardiñas, 2023. "seq2R: An R Package to Detect Change Points in DNA Sequences," Mathematics, MDPI, vol. 11(10), pages 1-20, May.
    4. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    5. Aurelio Fernández Bariviera & M. Belén Guercio & Lisana B. Martinez, 2014. "Informational Efficiency in Distressed Markets: The Case of European Corporate Bonds," The Economic and Social Review, Economic and Social Studies, vol. 45(3), pages 349-369.
    6. Zhang, Wenjia & Wu, Yulin & Deng, Guobang, 2024. "Social and spatial disparities in individuals’ mobility response time to COVID-19: A big data analysis incorporating changepoint detection and accelerated failure time models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    7. Zeileis, Achim & Shah, Ajay & Patnaik, Ila, 2010. "Testing, monitoring, and dating structural changes in exchange rate regimes," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1696-1706, June.
    8. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    9. Gao Wang & Abhishek Sarkar & Peter Carbonetto & Matthew Stephens, 2020. "A simple new approach to variable selection in regression, with application to genetic fine mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1273-1300, December.
    10. repec:jss:jstsof:23:i03 is not listed on IDEAS
    11. Maria Lourdes Ordoñez Olivo & Zoltán Lakner, 2023. "Shaping the Knowledge Base of Bioeconomy Sectors Development in Latin American and Caribbean Countries: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    12. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    13. repec:ers:journl:v:xxiv:y:2021:i:4:p:370-395 is not listed on IDEAS
    14. Akaev, Askar & Devezas, Tessaleno & Ichkitidze, Yuri & Sarygulov, Askar, 2021. "Forecasting the labor intensity and labor income share for G7 countries in the digital age," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    15. Petter Arnesen & Odd A. Hjelkrem, 2018. "An Estimator for Traffic Breakdown Probability Based on Classification of Transitional Breakdown Events," Transportation Science, INFORMS, vol. 52(3), pages 593-602, June.
    16. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    17. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    18. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    19. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    20. Malte Willmes & Katherine M Ransom & Levi S Lewis & Christian T Denney & Justin J G Glessner & James A Hobbs, 2018. "IsoFishR: An application for reproducible data reduction and analysis of strontium isotope ratios (87Sr/86Sr) obtained via laser-ablation MC-ICP-MS," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-15, September.
    21. Les Oxley & Chris Price & William Rea & Marco Reale, 2008. "A New Procedure to Test for H Self-Similarity," Working Papers in Economics 08/16, University of Canterbury, Department of Economics and Finance.
    22. Mensi, Walid & Lee, Yun-Jung & Al-Yahyaee, Khamis Hamed & Sensoy, Ahmet & Yoon, Seong-Min, 2019. "Intraday downward/upward multifractality and long memory in Bitcoin and Ethereum markets: An asymmetric multifractal detrended fluctuation analysis," Finance Research Letters, Elsevier, vol. 31(C), pages 19-25.
    23. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:066:i03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.